
Application of Semantic Matching in
Enterprise Application Integration

Bas van Gils
b.vangils@kub.nl

s184314

Tilburg, 15th February 2002

For my grandfather, A. C. M. van Gils

Preface

A journey is easier when you do not have to travel alone. This is one of the
things I learned during the last half year, while writing this thesis. During
the project, I received help –in many different forms– from a lot of people to
whom I wish to express my gratitude.

First of all I’d like to thank my girlfriend Eva who supported me in all possible
ways. With patience, enthusiasm and calmth she kept me on track. My
parents always stimulated me to do ‘enjoyable things’ and always encouraged
me to make my own choices. Their enthusiasm and support for anything I
undertook helped me to understand the things that matter in life.

As for the rest of the family, I feel gratitude for their interest in my studies,
and the many cheerful talks we’ve had over the last few years. I especially
want to thank Hans and Lucie van Gils for the long talks, loud music, and
for being who they are, and Jos Bertens for the many nice dinners we’ve had
together. Inge and Caro Beekman I thank for helping me getting settled in
Deventer and their cheerful view on life. I also thank my late grandfather
A.C.M. van Gils who is in my thoughts always.

The second group of people who I wish to thank are my colleagues at Tilburg
University / CentER-AR. I want to thank my supervisor, Willem-Jan, for
guiding me during the last six months. His vision, belief in me and comments
were invaluable. The people at the Infolab made me feel ‘at home’ from the
start; I couldn’t have wished for a better working environment. Cristina,
Alice, Jeroen, Kees, Frans, Manfred, and Hans thanks for your humorous
remarks, for introducing many useful tools (such as LATEX and linux) and for
making me feel at home in general. Cristina deserves an extra thank you
for correcting the English grammar and spelling in my thesis, and Hans for
participating in the experiment (see Chapter 6).

I also want to thank several people at the faculty of Arts: Hans Paijmans and
Antal vdn Bosch for introducing me into the field of Information Retrieval
and Machine Learning respectively, and for introducing me into the exciting
field of Natural Language Processing. The input from, and talks with Bertjan
Busser have helped me through some of the difficult steps of writing this
thesis.

i

PREFACE ii

This list would be incomplete if I forgot to mention everyone else who helped
me –either directly or indirectly– finish this this. The list seems endless;
Marc Graafmans, Maschinka Poiesz, Thomas Wouters, Martin Schapendonk,
Jaqueline Dake and all the people that I haven’t mentioned just yet: thanks
for your support and friendship.

Bas van Gils
Deventer, 15th February 2002

Contents

Preface i

1 Introduction 1

1.1 Background . 1

1.2 Research Questions and Methodology 4

2 Business Objects and Frameworks 7

2.1 Business Objects . 7

2.2 Business Object Frameworks . 9

2.3 Example . 11

2.3.1 Context . 11

2.3.2 Checking Process . 12

3 Using UML 14

3.1 The Unified Modelling Language 14

3.1.1 The Class Diagram . 15

3.1.2 Relations Between Classes 16

3.1.3 Object Constraint Language 17

3.2 Business Modelling with UML . 18

3.3 Modelling BOF with UML: an example 20

4 From UML to XML 22

iii

CONTENTS iv

4.1 XML Overview . 22

4.2 Modelling XML . 25

4.2.1 Document Type Definition 25

4.2.2 XML Schema . 26

4.3 Representing UML using XML . 28

4.3.1 XML Metadata Interchange Format 28

4.3.2 UML eXchange Format . 29

4.4 Approach in this thesis . 30

4.5 Example . 31

5 Semantic Matching 33

5.1 Semantics . 33

5.2 Deriviation of the Algorithm . 35

5.2.1 WordNet . 37

5.2.2 Document Vector Model 38

5.2.3 Proposed Algorithm . 42

5.3 Limitations . 44

6 Proof of Concept 46

6.1 The Experiment . 46

6.2 Examples . 47

6.2.1 Order Taking . 48

6.2.2 Making Backups . 49

6.3 Software . 49

6.4 Results . 51

6.5 Conclusions and Suggested Improvements 53

7 Conclusion 55

CONTENTS v

7.1 Overview . 55

7.2 Discussion . 57

7.3 Future work . 58

A DTD for mapping UML to XML 59

B XML example 61

C Python source code of the algorithm 64

List of Figures

1.1 Dimensions in the field of EAI . 2

1.2 Overview of the theoretical part 5

2.1 Business Object Architecture . 10

2.2 Line-box representation of the Business Object Architecture . . 12

3.1 UML notation for a class . 16

3.2 UML notation for association and generalisation 17

3.3 UML notation for composition . 17

3.4 OCL example of a post-condition 18

3.5 Example from Section 2.3 in UML notation 21

4.1 XML-RPC example . 24

4.2 DOCBOOK example . 24

4.3 DTD example . 26

4.4 XML Schema example . 27

4.5 XMI example . 28

4.6 Comparison of UML model elements and UXF elements 29

4.7 UML to XML conversion (partial) 32

5.1 Lexical Matrix . 38

5.2 Classical model of IR (Paijmans, 1999) 39

vi

LIST OF FIGURES vii

5.3 Graphical representation of the document vector model 40

5.4 Document database in the document vector model 41

5.5 Semantic Matching Algorithm . 43

6.1 UML representation of the taking order process 48

6.2 UML representation of backup process 49

6.3 Implementation of the algorithm 50

Chapter 1

Introduction

1.1 Background

An enterprise is a complex system that has a specific purpose or goal.
Business systems attempt to support the enterprise in achieving these goals.
The concepts that are used to define business systems are goals, resources,
processes and rules (Penker and Eriksson, 2000). Traditionally, enterprises
have been functionally divided (Douma and Schreuder, 1998). This functional
division was the cause of many problems, such as a huge administration
and difficulty to handle cross-functional problems (Johanesson and Perjons,
2001). In order to overcome these problems, many enterprises have been
focusing (and re-structuring their processes) on business processes that
create value for customers.

Enterprise Application Integration (EAI) is a business computing term
for the plans, methods, and tools aimed at modernising, integrating, and
coordinating the computer applications in an enterprise. A well-known
example of EAI is the integration of legacy systems with modern Enterprise
Resource Planing (ERP) software, which is an industry term for the broad
set of activities supported by multi-module application software that helps
a manufacturer or other business to manage the important parts of its
business. Implementing these systems is considered an important issue, for
they promise to improve efficiency in organisations (Laudon and Laudon,
1996).

Several dimensions play a role in examining the field of EAI. A short overview
of these dimensions is given here. More details follow in the upcoming
chapters. The first dimension is the viewpoint. EAI can be examined at
the implementation level software, or at a conceptual level using models.
The second dimension concerns time. Integrating software has both static
and dynamic aspects (OMG, 1997b). Static aspects deal with what is

1

CHAPTER 1. INTRODUCTION 2

conceptual

semantic

viewpoint

time

scope

static dynamic

syntactic

implementation

FIGURE 1.1: DIMENSIONS IN THE FIELD OF EAI

actually stored in a system. Dynamic aspects deal with the services that
a system offers. The third dimension considered is scope: syntaxis versus
semantics. The syntaxis level deals with the format (of the files/ messages/
commands) that a system accepts. At the semantic level the ‘meaning’ of a
system is considered. Figure 1.1 is a graphical representation of these three
dimensions.

The research question, which is defined in the next section, reflects the choices
at the three defined dimensions. The focus is at the conceptual, static and
semantic levels respectively. This corresponds to the highlighted area in
Figure 1.1.

Focusing on the conceptual, static and semantic levels of EAI, several
different classes of EAI can be identified. A classification of EAI can be found
in (Wangler and Paheerathan, 2000):

� Horizontal intra-organisational integration
An example is supply-chain management: an organisation tries to
optimise the complete set of activities of a business process (order entry/
production/ shipment). For example, suppose a telemarketing company
contacts people at home and tries to sell newspaper subscriptions. At
dinner time (most people are at home at that time), an employee of the
company calls someone at home, explains the benefits of a particular
newspaper and –if the person accepts the offer– enters the customers
name and address information in the computer system. This system
must be (tightly) integrated with the production and shipping systems,
because the new customer wants to receive his newspaper the next
morning already.

� Vertical intra-organisational integration
An example is the integration of a production monitoring system

CHAPTER 1. INTRODUCTION 3

(also called TPS, see (Laudon and Laudon, 1996) for details) with
Enterprise Resource Planning packages. Building computer-chips is a
very costly, and complex process, which must be carefully monitored.
Even the slightest deviation in the setup of machines can disrupt
the production process. Hence, several computer systems (fail-safe)
are monitoring every detail of the production process. This results in
enormous amounts of raw data. This data is important (and therefore
valuable) for the organisation: it is the basis for decisions on pricing the
chips, amount of maintenance and many other things. Therefore, the
monitoring systems must be integrated with higher-level applications
(e.g. a Decision Support System, see (Laudon and Laudon, 1996) for
details) in order to optimise the decision-making process.

� Inter-organisational integration
An example is the integration of the computer systems in a hospital
with the systems of a supplier in order to minimise overhead and try
just in time (JIT) delivery. Enormous amounts of money are involved in
(national) healthcare (see e.g. (Times, 2001)). A big part of this money
is used for ‘administrative purposes’. These overhead-costs should be
minimised; resources should be spent on healing patients. With a close
cooperation between external stakeholders (the case study in (Times,
2001) mentions insurance companies, care companies and suppliers)
and internal stakeholders (physicians, nurses) through Electronic Data
Interchange (EDI)1 the current situation was improved: the “members
send each other requests for information over the Internet using their
Web browsers. The answers are sent back on a private network.”. That
way a significant reduction in administrative cost (associated with
gathering, securing and maintaining information) is achieved.

These three categories have in common that two (or more) systems
are integrated. According to (King, 2002) this is a complex process:
“Unfortunately, many of these EAI projects turn out to be more than difficult,
and take more than a little longer – while chewing up more resources
then expected”. Because of the high costs and risks associated with this
integration process, it makes sense to study and plan this process carefully
before starting it. In this thesis the focus is on improving it by closely
examining the systems that are to be integrated.

The BALES methodology (binding Business Applications to LEgacy Systems)
deals with the integration of (new) Enterprise Applications with existing
(legacy) applications (vertical intra-organisational integration in the
classification) (van den Heuvel, 2002). The author adopts the notion that
business systems can be modelled using Business Objects (the representation

1EDI works by providing a collection of standard message formats and element dictionary
in a simple way for businesses to exchange data via any electronic messaging service (EDI,
2001)

CHAPTER 1. INTRODUCTION 4

of a business concept or process in an information system). Hence, the goal
of the methodology is to construct Business Objects in such a way that they
“might be used to seamlessly glue business and legacy objects together in
terms of their interface definitions”. This is achieved by finding out which
Business Objects can be mapped to legacy objects.

This approach can be extended to the EAI-approach in general: finding out
which parts of both systems can be mapped to another is an important step
in the process. The goal of this thesis is to find a metric for the similarity
of two Enterprise Systems. In agreement with the approach taken in
(van den Heuvel and Papazoglou, 1999a), Business Objects and Business
Object Frameworks (a framework in which individual Business Objects
are combined to model the business (Shelton, 1995)) are used as high-level
(hence, conceptual) representations of the Enterprise Systems. The choice for
Business Objects and Business Object Frameworks as a representation for
Enterprise Systems, as well as the importance of finding out which parts of
two systems can be mapped to another, is reflected in the research question
defined in the next section.

1.2 Research Questions and Methodology

This thesis consists of two parts (the first part deals with theory, the second
part with a proof of concept), and tries to answer the following research
question:

Given the specifications of two systems in terms of Business
Objects, how can the similarity (at the semantic level),
between these two systems be calculated in order to determine
how easy these systems can be integrated?

The first part is an extensive literature study, and is summarised in
Figure 1.2. The figure shows that several steps must be taken before the
research question can be answered. Hence, the theoretical part of this thesis
consists of four steps.

Before these steps can be taken, however, a deeper understanding of Business
Objects and Business Object Frameworks must be achieved. To this end,
several definitions of Business Objects- and Frameworks are discussed
and compared (e.g. (Digre, 1995), (Hung and Patel, 1997), (OMG, 1997a),
(Herzum and Sims, 1998), (Persson, 2000), (Shelton, 1995), (van den Heuvel
and Papazoglou, 1999b) and (van den Heuvel and Weigand, 2000)).

The first step concerns the modelling of a business system, in terms of
Business Objects, using the Unified Modeling Language (UML). These models

CHAPTER 1. INTRODUCTION 5

UML spec.
in terms of BOA

XML representation
of UML models

XML representation
of UML models

UML spec.
in terms of BOA

Similarity-
algorithm

Step 1 Step 2 Step 3

FIGURE 1.2: OVERVIEW OF THE THEORETICAL PART

will be the basis for the calculation mentioned in the research question.
UML defines a standard notation for object-oriented systems (Warmer and
Kleppe, 1999). It is a notation that can be used for the modelling of real-world
concepts, and is therefore well suited to model Business Object Frameworks
(Hruby, 1998).

UML, however, is a ‘graphical’ format, which is inconvenient for calculus. To
be able to compute the similarity between two specifications, at the semantic
level, a textual format is needed. The eXtensible Markup Language (XML)
provides a flexible way to create common information formats and share both
the format and the data on the World Wide Web, intranets, and elsewhere.
It is therefore usable to represent the UML models (Carlson, 2001). A
‘complicating’ factor is that there are many XML-based technologies available,
such as XML-schema and the XML Metadata Interchange Format (XMI). Some
vendors also have an XML implemenation to represent UML models (Booch
et al., 1999). The theory will be discussed, as well as a small example.

The last step is to find an algorithm which calculates the semantic similarity
between two models (which are represented as XML-documents). There are
two fields of research that are relevant in this part.

First of all, semantic information must be incorporated in the model. Several
approaches (borrowed from the field of software engineering in general) are
discussed, most notably, the semantic integration of conceptual schemas
(Mirbel, 1997), semantic clustering and transformation rules (Missaoui
and Sahraoui, 1998), query formulation through relationship semantics in
databases (Owei and Navathe, 2001) and the lexicographic reference system
called WordNet (Miller et al., 1993).

CHAPTER 1. INTRODUCTION 6

The second research field concerns the actual algorithm. The field of
information retrieval (IR) is that part of computer science which studies the
retrieval of information (not data) from a collection of written documents. In
other words, the IR-theory is used to find an algorithm that calculates the
semantic similarity between two models.

The derived algorithm computes the similarity between two systems. The
results of this algorithm must be interpreted in such a way that they answer
the research question. Hence, a discussion on intepreting the results of the
algorithm is included.

After deriving -and discussing the results of- the matching algorithm, the
second part of this thesis is a ‘proof of concept’. Firstly, the algorithm
is implemented (in the programming language Python). Secondly, some
(partial) specifications of systems are constructed. These will be used in a
small experiment where the results of the derived algorithm are compared
with the opinion of a human expert. Based on this experiment, conclusions
and suggestions for future research are derived.

Chapter 2

Business Objects and
Frameworks

This chapter deals with the first step in answering the research question.
The goal is to describe what business objects (BO ’s) are, and how enterprise
systems can be modelled using them. In Section 2.1 a general definition of
a BO is derived. This definition is the basis for Section 2.2, which explains
how BO ’s can be used to model a business by means of Business Object
Frameworks (BOF). Finally, Section 2.3 gives an example of Business Objects
and Frameworks.

2.1 Business Objects

Many definitions of what a Business Object is are available in literature,
which makes the term polysemous (Persson, 2000). These definitions differ
mostly because they are used in different contexts. However, they overlap a
great deal. In this section, several definitions from the available literature
are discussed, and a general definition is derived.

There are three types of objects: business, technology and application objects
(Shelton, 1995). Knowing this, a BO is defined as “Business Objects are
abstracts that represent a person, place, thing or concept in the business
domain. They package business procedures, policy and controls around
business data. Business objects serve as a storage place for business policy
and data, ensuring that data is only used in a manner semantically consistent
with business intent.”.

The author also states that BO ’s are specialised in two subcategories, namely
business entity objects (representing people, places and things in much

7

CHAPTER 2. BUSINESS OBJECTS AND FRAMEWORKS 8

the same manner as data-modeling entities) and business process objects
(representing business verbs/ business processes).

The Object Management Group (OMG)1 aims at creating a component-based
software marketplace by hastening the introduction of standardised object
software. The organisation’s charter includes the establishment of industry
guidelines and detailed object management specifications to provide a
common framework for application development. OMG is a major player in
the field of Business Objects. In (OMG, 1997a) they define the concept of BO
(from an implementation point of view) as “Business Objects are specialised
CORBA objects –they are network accessible through an object request broker.
A CORBA ‘object reference’ uniquely identifies an active business object
within the distributed objects environment for purposes of communication of
requests through an object request broker.”.

The definition of a BO in (Hung and Patel, 1997) is less implementation
oriented. The context is the Dynamic Systems Development Method (DSDM)
life-cycle environment. The paper defines a Dynamic Business Object
Architecture (see also Section 2.2) with a strong emphasis on business
enterprise activities and processes as well as feedback from end-users: “A
Business Object is a coarse-grained object abstraction that encapsulates a
typical, generic business task, adapted from a particular business domain. A
Business Object is used to capture and define a model of the user’s business
and its information requirements.”.

In (Herzum and Sims, 1998) the business component approach to distribute
system development is introduced. The concept of BO is named Business
Component and is defined as “the information system’s representation, from
requirements analysis through deployment and run-time, of an ‘autonomous’
business concept or process. It consists of all the software artifacts necessary
to express, implement and deploy the given autonomous business concepts as
an equally autonomous, reusable element of a larger information system.”.

From the above-mentioned definitions, several facts can be derived. These
facts must be relevant for the research question and the dimensions specified
in Section 1.1 (see Figure 1.1 for details). This means that implementation
details, as well as syntactic and dynamic aspects can safely be ignored. These
facts, summarised below, are the basis for the definition of the BO-concept
used in this thesis.

� A Business Object is a person, place, thing or concept in the business
domain.

� A Business Object stores business policy and data.
1http://www.omg.org

CHAPTER 2. BUSINESS OBJECTS AND FRAMEWORKS 9

� Development of Business Objects is aimed at providing a common
framework for application development.

� A Business Object is a coarse-grained object abstraction that represents
a business task from a particular business domain.

� A Business Object consists of all artefacts needed to represent a given
business concept.

These facts lead to the following definition of the concept of a Business Object:

Definition 2.1 (Business Object)
A Business Object (BO) is a coarse grained object abstraction that consists of
all artefacts needed to represent a person, place, thing or process in a given
business domain. Furthermore, the aim of BO development is to provide a
common framework for application development.

This definition is in agreement with the problem definition of this thesis, and
the dimensions defined in Figure 1.1. First of all, the definition states that
BO ’s have to do with an abstraction, which positions them at the conceptual
level. Furthermore, BO ’s do incorporate semantic and dynamic information
since they represent all artefacts to represent a person, place, thing or
process.

2.2 Business Object Frameworks

A business is a complex system, consisting of a hierarchical organisation
of departments and their functions (Penker and Eriksson, 2000). A good
business model contains information on business processes, resources
business rules, goals, etc.. The knowledge of domain experts (‘business
people’ as opposed to ‘technical people’) is very important in business
modelling (Bonar, 1997).

The aim of BO-development was to provide a common framework for
application development (see Definition 2.1). Thus, it makes sense to use
BO ’s to model business systems. In (Sutherland, 1995), Jeff Sutherland
recognises that software architectures must be transformed as business
models are renewed. A Business Object Framework (BOF) is an effective
solution for dynamic automation of a rapidly evolving business environment.

As with Business Objects, there are many definitions available of what a BOF
is in literature. An overview of these definitions is given here, as a basis for
deriving a general definition.

CHAPTER 2. BUSINESS OBJECTS AND FRAMEWORKS 10

p1 p2

p3 p4 p5

BO1

BO2
BO3

BO4

Business
Processes

Business
Objects

Entity Objects
and their
components

FIGURE 2.1: BUSINESS OBJECT ARCHITECTURE
(based on (Hung and Patel, 1997))

In (Herzum and Sims, 1998) a BOF is named ‘business component system’, and
is defined as “the whole of the business concept being developed in terms of
the set of business components needed to provide autonomy. It is the highest
level view, in which the system can be seen as a list of business components.”.
This definition stresses that business components can be used to model the
business at a high level.

It is in agreement with (Casanave, 1995), which uses the name ‘Business
Object Architecture’ for BOF, and is defined as “an architecture that
represents the components that are used to model business problems and
build the system.”. This definition is extended to a framework in (Hung and
Patel, 1997). This framework is depicted in Figure 2.1.

There are three levels to be defined. The first is the business process layer,
depicting the fact that BOF is used to model the business. The middle-layer
is the business object layer, and the bottom-layer consists of entity objects
and their components. Entity objects are objects holding information that
is typically stored in a database, and are also called ‘passive objects’ (Penker
and Eriksson, 2000)2.

The strong emphasis on the business architecture is also present in (Penker
and Eriksson, 2000). A well-designed architecture makes it possible
to thoroughly understand the structure being built, to plan the actual

2When using Definition 2.1 for Business Objects, the two lower layers in Figure 2.1 would
be merged.

CHAPTER 2. BUSINESS OBJECTS AND FRAMEWORKS 11

construction and to estimate costs. It defines a business architecture as
“an organised set of elements with clear relationships to one another, which
together form a whole defined by its functionality. The elements represent
the organisational and behavioural structure of a business system, and show
abstractions of the key processes and structures in the business.”.

In (Shelton, 1995), a framework is defined as a collection of abstract and
concrete classes, and the interfaces between them. The interactions between
these classes are called patterns. A pattern is an established generalised
solution that solves a problem that is common to different business situations
(Penker and Eriksson, 2000). There are three types of patterns:

1. Business patterns address problems within the business domain

2. Architectural patterns address problems that occur in the area of the
architectural design of information system

3. Design patterns are used for situations in which the analysis is already
mapped and described, and the focus is on producing technical solutions
that are flexible and adaptable

Combined, these two concepts (framework and pattern) form a definition
of BOF : “A Business Object Framework is a set of abstract and concrete
Business Object classes with a set of built-in business patterns.”.

The above mentioned definitions combined with the dimensions specified in
Section 1.1 (see Figure 1.1 for details), lead to the following definition of a
BOF :

Definition 2.2 (Business Object Framework)
A Business Object Framework (BOF) represents a business architecture.
Business Objects and Business Patterns are the building blocks for this
architecture.

2.3 Example

This section contains an example to clarify the concepts introduced in the
previous section. The example deals with checking parcels before they are
shipped to an online bookstore (e.g. http://www.amazon.com).

2.3.1 Context

The company used in this example, called OnlineBooks.com, sells books and
CD ’s over the internet. Customers can browse through the online catalog and

CHAPTER 2. BUSINESS OBJECTS AND FRAMEWORKS 12

add items to the virtual cart. Once the customer is done, he/she is redirected
to a secure area of the website where payment via creditcard is dealt with.
OnlineBooks.com has integrated their online webshop with back-end systems.
This means that as soon as a customer has finished the payment-procedure,
the order is inserted in a database, and a packing list is printed out.

This packing list is given to the packer, who collects all the goods on the
list and puts them in a parcel. The packing list is stapled to the parcel for
future reference. Once this is done, the parcel is stored in a storehouse,
and the packer marks the parcel as ‘done’ in the information system of
OnlineBooks.com. This results in a message to the storekeeper, who needs to
check whether the parcel is, indeed, ready for shipment.

In the storehouse, the isles are arranged and sorted using a country code (e.g.
NL for the Netherlands and UK for the Unighted Kingdom). This enables the
storekeeper to find the parcels quickly; walk to the corresponding isle and
find the parcel. Once it is found, the storekeeper checks whether the content
matches the packing list. If it corresponds, he/she marks the parcel as ‘ready
for shipment’ in the information system. If something is wrong, a message is
sent to the packer.

2.3.2 Checking Process

The actual process examined here is the process where the storekeeper
checks whether parcels are actually complete and, hence, ready for shipment.
Several Business Objects, and a single Business Pattern can be identified
based on the given context.

storehouse

storekeeper

goods packing list

parcel

checks

stored in

FIGURE 2.2: LINE-BOX REPRESENTATION OF THE BUSINESS OBJECT
ARCHITECTURE

CHAPTER 2. BUSINESS OBJECTS AND FRAMEWORKS 13

� The storekeeper is a BO of type ‘person’. The BO must represent the fact
that the storekeeper has the responsibility to check whether parcels are
complete and ready for shipment. Thus, the BO stores data on which
packages still need to be checked. Furthermore, the BO must have a
‘policy’ on how to check whether a parcel is complete.

� A parcel is a BO of type ‘thing’. The BO must represent that a parcel is
composed of goods and a packing list.

� Goods can be either ‘CD ’ or ‘book’; which are BO ’s of type ‘thing’. Data
such as title, date etc. must be stored in the BO.

� A Packing list is a BO of type ‘thing’, and stores things as shipping
information, price and information on when it was checked.

� A storehouse is a BO of type ‘place’. The BO must ‘know’ which parcels
are stored in the storehouse. The policy that isles are organised using a
country-code must be available in the BO.

The pattern is that the storekeeper uses the organisation of the storehouse
to track parcels. Figure 2.2 shows the ‘Business Object Architecture’, using a
simple line-box diagram style3.

3In Section 3.3 this example is displayed using the UML notation

Chapter 3

Using UML

A model is a miniature representation of a part of reality. Models are used
in many contexts, such as information systems and energy plants. Business
Modelling, hence, can be thought of as making a ‘picture’ of the business, and
Information Systems modelling deals with describing how an information
system works. There are many ways of modelling information systems (e.g.
‘Structured Analysis’ and OMT). Recognising the need for standardisation,
major players in the modelling field came up with a Unified Modelling
Language (UML).

Chapter 2 described what Business Objects are, and how they can be
combined in a Business Object Architecture. This chapter describes how a
Business Object Architecture can be modelled using UML. Section 3.1 gives
a short introduction to the Unified Modelling Language. Section 3.2 shows
examples from literature on how UML can be used to model businesses.
Section 3.3 describes how UML can be used to model a Business Object
Architecture.

3.1 The Unified Modelling Language

The Unified Modelling Language (UML) is a language for specifying,
visualising, constructing, and documenting the artifacts of software systems,
as well as for business modelling and other non-software systems (Group,
2001). There are many texts that describe what UML is, and how it can be
used1. The purpose of this section is not to give a full overview of UML, but to
give a short introduction. Attention will be paid to aspects that are relevant
for business modelling. This introduction is based on (Warmer and Kleppe,
1999).

1For an overview of UML-resources see http://www.omg.org/uml/ .

14

CHAPTER 3. USING UML 15

UML is a visual modelling language, not a methodology. It standardises
several diagram-types that, together, describe the model of a system. They
are categorised as follows:

� use-case diagram (also called requirements diagram): shows how a
system can be used by external entities (e.g. users)

� static diagrams:

– class diagram: shows the static structure of a system using classes
and their relationships

– object diagram: shows the static structure of a system in terms of
objects and their relationships

� dynamic diagrams:

– sequence diagram: shows when (in which order) messages are sent
and received within a system

– collaboration diagram: shows how objects cooperate to achieve a
goal

– state diagram: depicts the states an object can be in, as well as
which state-transitions are possible, during the object’s lifetime

– activity diagram: shows which activities are executed by parts of a
system

� implementation diagrams:

– component diagram: shows the partitioning of the entire system in
components, and the relationships between these components

– deployment diagrams: depicts how (software) components are used
in a specific system

Given the problem definition, the static diagrams are of interest for this
thesis2, in particular the class diagram. This diagram type is described in the
next section.

3.1.1 The Class Diagram

To be able to talk about a class diagram, first a definition of the concept class
must be given. The concept of a class stems from the field of object oriented
programming. Classes are a means of categorising objects. These can be
either real life objects or software objects, depending on the domain. Put more
formally:

2The other diagram types are not described in detail here. See the UML documentation for
further details on those.

CHAPTER 3. USING UML 16

Definition 3.1 (class)
A class is a set of objects which share a common structure and behaviour.
The structure of a class is determined by the attributes which represent the
state of an object of that class and the behaviour is given by a set of methods
associated with the class.
(based on: http://foldoc.doc.ic.ac.uk/foldoc/index.html)

A class, thus, has attributes. An attribute is ‘information’ that is stored in
an object. A class also has methods, which describe the services that an
object can perform. Another relevant concept is stereotype, which enables
classification that does not originate from the conceptual domain (Warmer
and Kleppe, 1999). For example, the class Employee has as its stereotype
Person , attributes called name and phone number , and methods called
speak and walk . Figure 3.1 visualises this example in UML-notation.

<Person>
Employee

name
phone#

speak
walk

FIGURE 3.1: UML NOTATION FOR A CLASS

3.1.2 Relations Between Classes

A class diagram is more than a summing of a number of classes. This section
describes several ways of connecting individual classes.

An association is a structural relationship between two classes (Warmer
and Kleppe, 1999; Penker and Eriksson, 2000). Objects can have several
associations with several classes; that is, they can play different roles (also
called ‘association end’) in several associations. In UML, an association is
shown as a solid line between two classes. Roles are written at the end of the
relevant association. An example is the fact that all companies must register
at the chamber of commerce (depicted in Figure 3.2).

A second type of relationship between classes is generalisation; it is the
relationship between a class and one or more refined versions of it. The class
being refined is called the superclass and each refined version is called a
subclass (Rumbaugh et al., 1991). For example: for a wholesale trader, both
a supplier and a customer are companies. They have some things in common
(for example, the fact that both must have a registration at the chamber
of commerce. However, they are ‘specialized’ in the sence that they differ

CHAPTER 3. USING UML 17

chamber of commerce

register at

register

supplier customer

catalog bill

company

reg# at chamber of commerce

FIGURE 3.2: UML NOTATION FOR ASSOCIATION AND GENERALISATION

in some things (e.g., a supplier can have catalog as an attribute, and a
customer can have bills as an attribute). In UML, generalisation is depicted
as a big arrow pointing at the superclass. The above mentioned example is
depicted in Figure 3.2.

Finally, a third type of relationship is composition. Aggregation is a
relationship that indicates which classes are “part of” another class. A
part-object can only exist as long as the ‘whole’ exists (lifetime dependency).
An example from the business domain is that an invoice must always be
composed of a picklist and a bill. In UML, composition is depicted as an
association with a black, filled diamond at the ‘whole’-end. Figure 3.3 depicts
the above-mentioned example.

invoice

picklist bill

FIGURE 3.3: UML NOTATION FOR COMPOSITION

3.1.3 Object Constraint Language

Recently it became apparent that, although visual modelling gives a lot of
insight, they have multiple interpretations (Warmer and Kleppe, 1999). For
example, the relation between a ‘person’ and an ‘information system’ can be
interpreted in different ways. One interpretation is: information about a

CHAPTER 3. USING UML 18

person can be stored in an information system. A second interpretation is
that a person manages/uses the information system. The Object Constraint
Language (OCL) is a textual language that can be used to specify constraints
on objects in UML. So, by using OCL, a model gets a single interpretation.
There are four types of constraints (Warmer and Kleppe, 1999):

� INVARIANT : a constraint on a class which must always hold for every
instance of that class

� PRE-CONDITION : a constraint that must always hold directly before the
execution of a method

� POST-CONDITION : a constraint that must always hold directly after the
execution of a method

� GUARD : a constraint on a state transition of an object

OCL has a formal syntax which will not be discussed here3. An example of
how OCL can be used, however, is the following: suppose the class4 Article
has a method deliverable and there is a business rule saying that the
‘availability’ of an article is the amount in stock of this article. Figure 3.4
shows this rule (a post-condition) in OCL.

context Article::deliverable(): Boolean
pre: --
post: result = (availability = #inStock)

FIGURE 3.4: OCL EXAMPLE OF A POST-CONDITION

This example shows how a post-condition can be expressed in OCL. This
expression should be in a UML-note, attached to the Article class. The other
constraint-types are added to UML-models in pretty much same way.

3.2 Business Modelling with UML

This section discusses how UML can be used to model business (systems).
First, several approaches from literature are discussed. After that, the
approach used in this thesis is derived.

In (Penker and Eriksson, 2000), the concepts resource, process, goal and
rule are the building blocks for business systems. Standard UML diagrams

3For a discussion on OCL see the book by Jos Warmer and Anneke Kleppe: The Object
Constraint Language: precise modelling with UML

4See Section 3.1.1

CHAPTER 3. USING UML 19

and symbols can be used to model the business: “Static diagrams as well
as dynamic diagrams are valid and appropriate for describing . . . a business
system”. The static models (using stereotypes for the four ‘building blocks’)
are used to capture structural aspects of business model. The dynamic model
types are used to capture temporal aspects.

A similar approach is followed in (Heumann, 2001); it is stressed that a
visual model of the business “can provide important insights” and that “the
Unified Modelling language . . . can be used effectively to create such a model”.
In this approach Use-Case models are used to describe business processes.
The Use-Case model consists of a digram, showing a high-level overview
of a business process, and a use-case specification. The latter documents
the details (name, description, performance goals, benefits, requirements,
etc.) associated with the diagram. Furthermore, the approach uses UML
activity diagrams to describe the structure of different workflows. Finally, a
Business Object Model is used to model how processes work: “it serves as an
abstraction of how business workers and business entities need to be related
and to collaborate in order to perform the business”.

In (Popkin, 1998) this approach is also adopted. Use-case diagrams and
activity diagrams capture how processes / scenarios execute; they show “what
objects interrelate to make . . . behaviour happen”. Class diagrams are the
central analysis diagrams, and capture the static structure of a system.
An informal techique called CRC Cards5 is used for a ‘responsibility driven
analysis’. Finally, state diagrams are used to model real-time behaviour of
the system.

The approach in this thesis is a subset of the mentioned approaches, and
is based on the notion that UML can be used to model the Business Object
Framework (Hruby, 1998). The building blocks of BOA are business objects
and business patterns (see Definition 2.2 on page 11).

Since a BO represents a person, place, thing or process in a given business
domain, UML must be used to describe these. The emphasis in this thesis is
on static aspects, which results in using the UML-class diagram. Classes in
the class model map to business objects; the ‘properties’ of Business Objects
are represented by the attributes and the ‘behaviour’ is represented by the
methods. Furthermore, each class is stereotyped as either a person, place,
thing or process to indicate which ‘type’ of BO it is. Finally, OCL-constraints
are used to express aditional constraints (such as business rules and patterns)
to the model.

5CRC Cards are not discussed in this thesis. For an introduction see e.g.
http://c2.com/doc/oopsla89/paper.html .

CHAPTER 3. USING UML 20

3.3 Modelling BOF with UML: an example

Based on the approach derived in the previous section, the example presented
in Section 2.3 can be modelled using the UML notation. Figure 3.5 shows the
class diagram.

The class diagram has eight classes. Each class represents a Business Object,
and is sterotyped according to its ‘type’ 6.

The first class is storekeeper. Obviously, this is a person. The storekeeper has
three attributes and two methods which are relevant for this domain. First of
all, different storekeepers have different names and social security numbers
to distinguish them. Furthermore, each storekeeper has a list of parcels to
check. The two methods are used to add goods to this list, and to remove
them respectively.

The storekeeper participates in several checking processes, which is the
second class. The checking process deals with checking whether a parcel is
complete, and ready for shipment. This check is executed by the storekeeper
and returns either true or false. The OCL constraint attached to the class
represents this post-condition.

Parcel is the third class. One parcel is checked in exactly one checking process,
and consists of a packing list and one or more goods. In this case, goods can
be either books or CD’s.

A packing list stores data such as shipping info, price and checking info (who
packed the parcel and when). The CD class has the artist(s), the tracks and a
date as its attributes. The book class stores the name of the author, the title
and the ISBN.

The last class is storehouse. Many parcels are stored in one storehouse.
The isles of the storehouse are sorted using a country code (represented by
the note attached to the storehouse class). Finally, the storehouse class has
methods to represent the fact that parcels can be stored in, or removed from
the storehouse.

6The definition of a BO has four types: person, place, thing and process. See Definition 2.1.

CHAPTER 3. USING UML 21

parcels

<<place>>
storehouse

store parcel
remove parcel

<<thing>>
parcel

packing list
goods
add goods
remove goods

<<thing>>
goods

<<thing>>
CD

artist
tracks
date

<<thing>>
Book

author
title
ISBN

<<thing>>
Packing list

shipping info
price
checking info

seeks parcel in

stored in

isles are sorted
using a country code
(e.g. UK and NL)

*

1

1
1

1

1

*

*

1

1

1

<<person>>
storekeeper

add goods to list
remove goods from list

parcels to check
name
social security number

<<process>>
checking process

storekeeper
parcel

check contents
notify

participates in

is checked in

price

-- if the check contents method returns
-- false, then someone must be notified
-- that the checked parcel was not ok
context checking process.check contents(): Boolean
pre: --
post: result = self.check contents <> true implies

self.notify

* *

FIGURE 3.5: EXAMPLE FROM SECTION 2.3 IN UML NOTATION

Chapter 4

From UML to XML

Many different ways of representing ‘structured data’ exist. For structured
data one should think of such things as spreadsheets, address books and
databases. An essential characteristic of structured markup is that it
explicitly distinguishes (and accordingly ‘marks up’ within a document) the
structure and semantic content of a document (Walsh and Muellner, 2001).

Structured data can be stored as either a binary, or a textual format (w3c,
2000). Binary representations of data are machine readable only. However,
textual formats are characterised by the fact that they can also be read
by humans. Performing calculations to a UML model is difficult since UML
is a graphical notation (See also Figure 1.2). This chapter discusses how
the eXtensible Markup Language (XML), a textual format, can be used to
represent UML.

First, a short overview of what XML is -and where it is (often) used- is
presented. Two examples (XML-RPC and DOCBOOK) of XML vocabularies are
covered here. These are also the basis for the section on XML modelling.
After this, several mappings between UML and XMLare covered (most notably
the XML metadata interchange format (XMI) and the UML exchange format
(UXF)). Finally, a methodology for mapping UML to XML used in this thesis is
derived.

4.1 XML Overview

The eXtensible Markup Language (XML) is a meta-markup language
standardised by the World Wide Web Consortium (W3C). It defines a syntax
to markup textual data with simple, human-readable tags1, and is flexible
enough to be customised for many different application domains.

1Tags are sometimes referred to as tokens

22

CHAPTER 4. FROM UML TO XML 23

The tags of XML, look very much like the tags that are used in HTML. Start
tags begin with a < and end tags begin with a </ . Both of these are followed by
the name of the element and are closed by a >. XML also has empty elements
which have the form <elementname /> .

Documents that conform to a simple set of rules are said to be well-formed
(Harold and Means, 2001) The simple, though strict, syntax rules of XML are:

1. All XML elements must have a closing tag

2. XML tags are case sensitive

3. All XML elements must be properly nested; overlapping elements are not
allowed

4. All XML documents must have a root tag

5. Attribute values must always be quoted

Data is included in XML documents as plain text surrounded by markup tags.
A unit of data, its tags inclusive, is referred to as an element. There is no
fixed list of tags that are always supposed to work for everyone and in every
application domain. XML is a meta language – a language for describing other
languages. This means that people can define their own sets of tags (also
called vocabularies (Flynn, 2001) or applications (Harold and Means, 2001))
that fit their particular application domain (e.g. physics, chemistry, business
modelling, etc.).

Many of these vocabularies are readily available today. Two well-known
examples are XML-RPC and DOCBOOK. The first is a specification and a set of
implementation that allows software running on different machines and / or
operating systems to make procedure calls over the internet, using XML as
the encoding (XML-RPC, 2001). Using XML makes sense because of the fact
that, nowadays, most machines have an XML-parser available (Winer, 1998).
Applications, regardless of the platform they are running on, can use this
parser to separate the actual data from the XML encoding2.

Figure 4.1 holds a small example of a XML-RPC-request taken from (XML-
RPC, 2001). In the example, a methodcall examples.getStateName is sent
to betty.userland.com . The methodcall has one parameter named i4 ,
which has the value 41 .

The second example – DOCBOOK – is a popular XML vocabulary for writing
(technical) documentation (Walsh, 2001). The rationale behind DOCBOOK

2An example on how to use XML-RPC within the Python programming language can be
found at
http://www.onlamp.com/pub/a/python/2000/11/22/xmlrpcclient.html

CHAPTER 4. FROM UML TO XML 24

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>

<methodName>examples.getStateName</methodName>
<params>

<param>
<value> <i4> 41 </i4> </value>

</param>

</params>
</methodCall>

FIGURE 4.1: XML-RPC EXAMPLE

is to promote the interchange and delivery of documents. Using XML, the
semantics of a document could be defined, without -much- worrying about
how the document will be rendered in the end. For example, one specifies
that something is a emphasized rather then ‘this is 11pt, italic, in a Times
new Roman font’ (Walsh and Muellner, 2001).

Figure 4.2 has a small DOCBOOK example. This document/ excerpt is an
article , written by the honorific Dr Emilio Lizardo and currently has
one – empty – paragraph.

<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook V3.1//EN">
<article>

<artheader>
<title>My Article</title>
<author>

<honorific>Dr</honorific>
<firstname>Emilio</firstname>
<surname>Lizardo</surname>

</author>
</artheader>

<para> . . . </para>
</article>

FIGURE 4.2: DOCBOOK EXAMPLE

CHAPTER 4. FROM UML TO XML 25

4.2 Modelling XML

It is often useful to check whether an XML document (also called instances
(Ray, 2001)) conforms to a specific vocabulary. The process of formally defining
a language in XML is called document modelling. For example, a document
model answers such questions as ‘Can this element have price?’ or ‘What
kind of data does a person-element hold?’.

Definition 4.1 (Document Model)
A document model describes a document type and defines the documents that
can be produced with a language. Conforming documents are said to be valid
within the context of the language; other documents are invalid.

The document model is a document, written in a specific syntax designed to
describe XML languages and explicitly defines the markup of a vocabulary.
Two document modelling types exist: Document Type Definition (DTD) and
Schema.

4.2.1 Document Type Definition

According to (Ray, 2001), the Document Type Definition (DTD) is the most
popular type of document model. A DTD declares which elements are allowed
in a document that should be conform to the DTD (e.g. a ‘book’ has a ‘title’). It
also defines what elements or data can go inside an element, in what order,
and in what number. Together, these are the vocabulary and the ‘grammar’ of
the language (Ray, 2001; Harold and Means, 2001).

The syntax for DTD ’s stems from SGML3. A DTD encompasses a set of
rules, or declarations, which add elements, sets of attributes or entities.
A declaration of an element has the following syntax: <!ELEMENT name
content-model> . The name is case-sensitive. Furthermore, there are
five different content models (empty elements, elements with no content
restrictions, elements containing only character data, elements containing
only elements and elements with mixed content), which are not further
discussed here4.

Elements can have attributes. For each element, thus, an attribute
declaration list can be included in the document model. Such an attribute
declaration takes the following form: <!ATTLIST elementname attname1
atttype1 attdescname1 > .

3SGML is Standard Generic Markup Language, and is not covered in this thesis.
4See e.g. (Harold and Means, 2001)

CHAPTER 4. FROM UML TO XML 26

<?xml version=’’1.0’’?>
<!DOCTYPE person[

<!ELEMENT first name (#PCDATA)>
<!ELEMENT last name (#PCDATA)>
<!ELEMENT profession (#PCDATA)>
<!ELEMENT name (first_name, last_name)>
<!ELEMENT person (name,profession*)>

]>

<person>
<name>

<first_name> Alan </first_name>
<last_name> Turing </last_name>

</name>
<profession>computer scientist</profession>
<profession>mathematician</profession>
<profession>cryptographer</profession>

</person>

FIGURE 4.3: DTD EXAMPLE

Each attribute list belongs to one single element (attname). Further, every
attribute has a type (atttype) and a description of the attribute behaviour
(attdescname). There are several attribute types (CDATA, NMTOKEN,
NMTOKENS, ID , IDREF, IDREFS, ENTITY, ENTITIES and NOTATION) and
different kinds of behaviour for attributes (default value assigned, #IMPLIED ,
#REQUIREDor #FIXED), which are not covered here.

Figure 4.3 has a small XML-example, consisting of a DTD and an XML-
document that is valid according to this DTD. The DTD specifies that a
person must have a name, and may have one or more (indicated by the *)
professions. Furthermore, a nameconsists of a first nameand a last name.
The XML-document has only one person.

4.2.2 XML Schema

For some uses, DTD ’s turned out to be insufficient; the syntax is not flexible/
expressive enough for some needs. For example, expressing multiplicity-
constraints (a la UML) are nearly impossible to implement using a DTD. Also,
the fact that documents follow XML syntax and DTD ’s follow a whole different
syntax is ‘odd’ to some people (Ray, 2001). XML Schema (sometimes referred
to as XSchema) provides an alternative document modelling technique.

XSchema is a standard provided by the Schema Working Group at the World
Wide Web Consortium (XSchema, 2001). Its syntax is well-formed XML and
provides more control over datatypes and patterns. An XSchema identifies
a document as a schema, and associates it with the XSchema namespace.

CHAPTER 4. FROM UML TO XML 27

<xsd:schema xmlns:xsd=’’http://www.w3.org/1999/XMLSchema’’>
<xsd:element name=’’person’’ type=’’PersonType’’/>

<xsd:complexType name=’’PersonType’’>
<xsd:element name=’’name’’ type=’’name’’/>
<xsd:element name=’’profession’’ type=’’xsd:string’’

minOccurs=’’0’’ maxOccurs=’’*’’/>
</xsd:complexType>

<xsd:complexType name=’’name’’>
<xsd:element name=’’first_name’’ type=’’xsd:nme’’/>
<xsd:element name=’’last_name’’ type=’’xsd:nme’’/>

</xsd:complexType>

<xsd:simpleType name=’’nme’’ base=’’xsd:string’’>
<xsd:pattern value=’’[a-zA-Z]+’’/>

</xsd:simpleType>
</xsd:schema>

<person>
<name>

<first_name> Alan </first_name>
<last_name> Turing </last_name>

</name>
<profession>computer scientist</profession>
<profession>mathematician</profession>
<profession>cryptographer</profession>

</person>

FIGURE 4.4: XML SCHEMA EXAMPLE

Next the constraints on XML elements are included. An element can be
either simple (one that has no attributes or elements for content) or complex.
Restrictions on the content model are made by using attributes such as
minOccurs and maxOccurs .

Furthermore, every element has a type attribute. There are several
predefined datatypes available (e.g. float , boolean and binary). Using a
<pattern> declaration, additional pattern restrictions on the model can be
made as well. These patterns follow the syntax of regular expressions5.

Figure 4.4 has a small example of XSchema (actually, the same as the DTD-
example in Figure 4.3). The first line of the example defines the namespace
xsd for the rest of the schema-definition. The top-level element is name, which
is a complexType consisting of name and profession . The profession must
occur between 0 and ‘infinite’ times. A name is a complexType consisting
of a first name and a last name; both of which are of type nme. Finally,
nme is a simpleType based on string . The ‘extension’ is a pattern saying

5See e.g. http://www.devshed.com/Server Side/Administration/RegExp/ for an
introduction on regular expressions

CHAPTER 4. FROM UML TO XML 28

<!-- partial, header not included -->

<Model xmi.id="a1">
<Class xmi. id="a7">

<name>Customer</name>
<feature>

<Attribute>
<name>id</name>
<multiplicity>

<XMI.field> 1</ XMI.field>
<XMI.field> 1</ XMI.field>

</multiplicity>
<type> <DataType href="|a247"/> </type>

</Attribute>
<Operation>

<name>update</name>
<scope xmi.value="instance"/>

</Operation>
</feature>

</Class>
</Model>

FIGURE 4.5: XMI EXAMPLE

that anything that is of type nme must conform to the pattern ‘one of more
occurrences of a lower- or uppercase letter’.

4.3 Representing UML using XML

Section 1.2 explains that it is necessary to represent UML models in a textual
format in order to calculate the similarity, at the semantic level, between the
two models. In this section, two approaches that use XML to represent UML
models are discussed, most notably XML Metadata Interchange Format (XMI)
and the UML eXchange Format (UXF). The methodology used in this thesis is
derived after that.

4.3.1 XML Metadata Interchange Format

The XML Metadata Interchange Format (XMI) provides, among other things,
a way for creating an open interchange format from a domain using UML
(Brodsky, 1999). The XMI technology was originally developed by OMG and
is based on the XML standard from the World Wide Web Consortium (W3C)
(Brodsky, 1999).

CHAPTER 4. FROM UML TO XML 29

UML model element UXF Representation
Association <Association>
AssociationEnd <AssocRole>
Attribute <Attr>
Class <Class>
Generalization <Generalization>
Operation <Operation>
Refinement <Refinement>

FIGURE 4.6: COMPARISON OF UML MODEL ELEMENTS AND UXF ELEMENTS

In November 1997, both MOF6 and UML were adopted as OMG standards.
However, an interchange format was not included at that time (Iyengar and
Brodsky, 1998). XMI uses XML to enable the representation of UML based
models, using a specified UML DTD 7.

The following example is taken from (Iyengar and Brodsky, 1998). Suppose
a very simple model comprised of only one class Customer . This class has
one attribute id:CustId and one method update . Figure 4.5 shows the XMI-
representation of this model. It makes use of namespaces8, which are not
discussed in this thesis. However, the figure clearly demonstrates how UML
constructs described in Chapter 3 are represented.

4.3.2 UML eXchange Format

The authors of (Suzuki and Yamamoto, 1998) recognised the need for a
format to make UML models exchangeable on the Internet and/or between
development tools. The solution presented in this paper uses the UML
eXchange Format (UXF). UXF provides a mapping from UML to XML. The
choice for XML is based on the fact that it focuses on the description of the
information structure and content as distinct from its presentation.

Each construct in the UML specification is mapped directly to an XML tag9.
Figure 4.6 shows a part of this mapping. Furthermore, the attributes of each
UML construct are mapped to attributes in the XML model.

6MOF stands for ‘Meta Object Facility’ and is not explained in this thesis. See e.g.
http://www.omg.org/technology/documents/formal/mof.htm .

7The DTD can be found at ftp://ftp.omg.org/pub/docs/ad/98-10-16.dtd
8For an explanation of XML namespaces see e.g. (Harold and Means, 2001)
9Not all UML elements were discussed in Chapter 3; this overview is an integral copy from

(Suzuki and Yamamoto, 1998)

CHAPTER 4. FROM UML TO XML 30

4.4 Approach in this thesis

The approach in this thesis is a combination of the two previously mentioned
methods. The basis for the mapping is the definition of a Business Object
(Definition 2.1 on page 9) and Business Object Framework (Definition 2.2 on
page 11). The goal is to create a mapping from UML to XML that enables
semantic comparison of two UML models. This mapping is dealt with in the
next chapter.

The first choice to be made is between a DTD and XSchema. This choice comes
down to deciding whether a DTD has enough expressive power to represent
the semantics of a UML model representing a Business Object Architecture.
Both the UXF- and the XMI use a DTD. The approach followed in this thesis
is based mainly on UXF 10. Therefore, the choice for a DTD seems apparent.
The remainder of this section explains how the DTD -which can be found in
Appendix A- was constructed.

The first step in generating this DTD is to create a top-level node in the XML
document called model . This node has an optional attributed name, which
may contain the name of the model.

In this thesis there are four types of BO ’s: a person, place, thing and
process, represented by the stereotypes in the UML model. The second
step in representing the UML model in XML therefore, is to create tags
for each class. The format for this is <class type=’’sterotype’’
name=’’name of the class’’ id=’’classid’’> . stereotype is one
of the four BO-types, and name of the class is a mandatory attribute
representing the class name in the UML-model. Furthermore, all classes have
a mandatory attribute id . These id’s are unique.

The attributes of each class are represented by attr XML tags. These
tags have no further attributes. The same applies to methods, which are
represented by method tags.

Mapping associations is less straightforward. This is done using a role tag
inside the tag holding the class-name. This tag holds the role-name, and has a
mandatory attribute peer to indicate the id of the related class. Composition
is mapped using a composition tag in the class. The ‘composites’ are
defined completely (starting with a class-tag) within this composition-tag.
Specialisation is mapped using a specialisation tag within a class. The
format for this is specialisation ref=’’id’’ /> . id refers to the
definition of a specialised class.

Finally, the UML-model can have OCL-constraints, which must also be mapped
to XML. This is achieved through a ocl tag. The ocl tag contains tags

10actually, the DTD developed in this chapter is a stripped down version of the UXF format.

CHAPTER 4. FROM UML TO XML 31

for doc’s, pre- and post-conditions, context, and types. These tags have no
attributes.

4.5 Example

The example presented in this section is a continuation of Section 3.3,
particularly Figure 3.5 on page 21. One of the classes in this figure is
checking process . Using the strategy and the DTD of the previous section,
this class can be mapped to XML.

� The name of the class is checking process . Thus, the top-level
tag for this class is class , with attributes type=’’process’’ and
name=’’checking process’’ . Furthermore, the id parameter must
be provided.

� The class has two attributes; storekeeper and parcel. Therefore, there
must be two tags attr nested in the class tag with these attributes as
values.

� The class also has two methods; check contents and notify. Thus, there
must be two method tags nested in the class tag with these methods
as values.

� The class has an OCL-constraint, represented by an ocl tag. Nested in
this tag are the doc -, context -, type -, pre - and post tags.

Figure 4.7 shows the XML representation of this class. The entire XML-
representation of the UML document can be found in Appendix B.

CHAPTER 4. FROM UML TO XML 32

<class type="process" name="checking_process" id="pro1">
<attr>storekeeper</attr>
<attr>parcel</attr>
<method>check_contents</method>
<method>notify</method>
<role peer="th1">is_checked_in</role>
<ocl>

<doc>
if the check contents method returns
false, then someone must be notified
that the checked parcel was not ok

</doc>
<context>checking process.check contents()</context>
<type>Boolean</type>
<pre />
<post>

result=self.check contents != true implies self.notify
</post>

</ocl>
</class>

FIGURE 4.7: UML TO XML CONVERSION (PARTIAL)

Chapter 5

Semantic Matching

In the previous chapters, a framework for describing and representing
Business Objects (BO’s) was presented. These corresponded to the first two
steps in Figure 1.2. This framework was based mainly on literature on
BO-technology, UML and XML. In this chapter, a different approach is needed,
for it deals with the Similarity/matching algorithm from Figure 1.2. An
algorithm for semantically matching two specifications (Business Object
Frameworks), expressed in XML needs to be derived in this chapter.

Section 5.1 describes what is meant with semantics. A definition is derived
based on examples from literature. Also a clearer formulation for semantic
match between two specifications is presented. These definitions are the basis
for Section 5.2, which describes the algorithm. It turns out that literature
from the field of Machine Learning and Information Retrieval help in deriving
this algorithm.

5.1 Semantics

This section attempts to give a definition of the concept semantic matching,
more specifically: semantically matching two specifications (Business Object
Frameworks, expressed in XML). First, an overview of literature on semantics
(what is meant by the term ‘semantics’ ?) is given. It turns out that many
definitions of this concept are in use. Based on this discussion, a working
definition is derived. This definition is the basis for explaining semantic
matching in the context of this thesis.

Even though many authors use the concept ‘semantics’, a clear description
is hard to find in literature. Several examples of how semantics are
used in literature illustrate this. In (Owei and Navathe, 2001) ‘semantic
datamodels’ and ‘relationship semantics’ are used to define a Concept-based

33

CHAPTER 5. SEMANTIC MATCHING 34

Query Language (CQL). CQL uses concepts that are as close as possible
to those in the end-users’ mental model to query databases. Semantic
clustering techniques are used in (Missaoui and Sahraoui, 1998) as part of a
methodology for handling database migration. The authors briefly mention
that semantic modelling uses ‘high-level constructs for structuring data’, but
no more than that.

A more detailed discussion about semantic modelling is found in (Mirbel,
1997), where semantics are used to define a methodology for integration of
conceptual schemas at a semantic level (which is similar in many respects
to the approach taken in this thesis). The authors state that “In order to
integrate (design) schemas, their elements (attributes, methods, classes and
links) must be compared.”. The criteria for this comparison -at the semantic
level- are names and -at the structural level- roles. Two measurements are
used in this approach:

� semantic likeness: words are no more than tokens to represent a certain
concept. Several words (synonyms) can be mapped on the same concept.

� semantic ambiguity: one word can have several meanings (homonyms).
These words are said to be ambiguous.

This approach makes sense, because in (Hoppenbrouwers, 1997) it is shown
–amongst other things– that natural language (and therefore ‘words’) play an
important role when examining a system.

Since no single, clear definition of semantics was found in literature, a
dictionary was used. According to WordNet1, semantic means of or relating
to the study of meaning and changes of meaning; “semantic analysis”. This
definition is in agreement with definitions taken from other dictionaries (e.g.
the online dictionary wordsmyth2).

In other words, the semantics of some concept x deals with what x means,
rather then what its structure is. This distinction is important, for many
authors define semantics as the opposite of structure (e.g. (Mirbel, 1997)).
For example: the semantics of the concept ‘car’ could be ‘a machine for
transportation, also called automobile’. Note that no remarks about the
structure of a car (it consists of four wheels, a motor, etc.) are included here.
This leads to the following definition of a semantic match:

Definition 5.1 (Semantic match)
A semantic match between two concepts is a measurement of how similar the
meaning of two concepts is. It is based on semantic likeness (synonyms) and
semantic ambiguity (homonyms), and is considered to be the counter part of
the structural similarity of these concepts.

1http://www.cogsci.princeton.edu/ �wn/
2http://www.wordsmyth.net/

CHAPTER 5. SEMANTIC MATCHING 35

Hence, the semantic matching activity deals with finding out how similar
the meaning of two (or more) things are. In the context of this thesis these
things are, of course, Business Object Frameworks. Suppose, for example,
that one has two computer-systems. The first system is a tradition Enterprise
Resource Planning (ERP) system which is used to support the entire business
from purchase to sales. The second system is a newly developed webshop.
Ideally these two systems should be coupled. However, this is currently not
the case. In order to find out whether integration is possible, the two systems
should be compared (e.g. (Mirbel, 1997)). Following the approach in this
thesis, both systems are modelled as Business Object Frameworks, and an
algorithm for finding the semantic match (derived in the next section) is used.
The result of this algorithm must be interpreted in order to decide whether
integration is possible or not.

5.2 Deriviation of the Algorithm

The algorithm in this thesis is based on approaches described in (van den
Heuvel, 2002) and (Zaremski and Wing, 1995). In (van den Heuvel, 2002),
the BALES methodology (binding Business Applications to LEgacy Systems)
is discussed. The methodology aims at “constructing parameterisable
business objects to link (off-the-shelf) business components to legacy system
components on the basis of their interface definitions”. In this paper,
an algorithm is derived that retrieves the “semantically relevant” legacy
specifications. To achieve this, both the legacy system, and the business
components are represented in a common ontology; currently WordNet.
The calculated distance between these specifications3 is calculated. All
legacy specifications whose distance to the business components are within
a specified range (smaller than a predefined threshold value) are retrieved.
Hence, the algorithm can also deal with ‘partial matches’.

In (Zaremski and Wing, 1995) a methodology for finding software components
that conform to a (formal) specification at the semantic level is discussed (the
context is “software reuse and library retrieval”). In this methodology the
behaviour of software components are described using a formal notation, in
terms of pre- and postconditions4. The difference between an exact match and
a relaxed match are discussed. The approach in this thesis uses the setup
(shared ontology) from the approach in (van den Heuvel, 2002), and uses the
notion of partial match as introduced in (Zaremski and Wing, 1995).

The goal of this section is to derive an algorithm that takes two Business
Object Frameworks (BOF’s) as input. It calculates how similar they are and
returns this similarity. Recall that a Business Object (BO) is a representation

3The details on how this is calculated is not covered in this thesis.
4Details on what pre- and postconditions can be found in (Warmer and Kleppe, 1999).

CHAPTER 5. SEMANTIC MATCHING 36

of a person, place, thing or process in a given business domain (See
Definition 2.1 for details), and that it is represented using a UML-class
diagram. A BOF uses BO’s to represent the (computer) systems in an
organisation (Definition 2.2).

Two high-level approaches must be considered for this algorithm. In the first
approach, comparing two BOF’s is done by comparing individual BO’s and later
combining the results of these (many) comparisons. The advantage of this
approach is that it is very intuitive; first one finds BO’s in both specifications
that are similar by examining attributes and methods, and later combine
these results into a single metric. The disadvantage is that computers do
not understand the data that they are processing (e.g. (Cover, 1998)). This
results in the fact that all BO’s from one BOF must be compared to all BO’s
from the other BOF. In other words: the overhead would be significant. A
second problem arises when the results of the individual comparisons must
be combined into a single metric. This would involve a good deal of math, with
a high risk of blurring the interpretation of the results.

The second approach is more direct: the two BOF’s are compared in an integral
manner; that is, they are treated as holistic entities. The downside of this
approach is that it is less intuitive then the first approach: there is no obvious
way of how to do this comparison (the next paragraphs will show that feature
selection techniques and the document vector model can be used to this end).
The advantage of this approach is that it fits in an entire step, and that -
hopefully- the output is easy to interpret.

The second approach is used in this thesis, which brings up the question:
‘How can two BOF’s be matched in an integral manner?’. The first step to
be taken is the extraction the (semantically) relevant information from the
two BOF’s. Similar problems are tackled in the research-field called Machine
Learning (ML). The ML research field deals with the question of how to
construct computer programs that automatically improve with experience
(Mitchell, 1997). An example of an application is a program that leans to
detect fraudulent creditcard transactions by examining a set of training-
material. In order for the program to learn efficiently, the correct features
must be selected.

In ML, objects are called instances. These instances represent real-world
things (e.g. creditcard-transactions, or words) with a set of features. These
features must be selected carefully. In ML this process of feature selection
is based on statistics such as Information Gain, which measures the
quantitative worth of a feature (Mitchell, 1997). In this thesis, the features
must be selected from the BOF. This BOF was originally expressed in UML,
but later converted to XML so that a program can read- and work with it.

In (Mirbel, 1997) it is shown that synonyms and homonyms play a great role
in semantic matching (see also the discussion in Section 5.1). Therefore, the

CHAPTER 5. SEMANTIC MATCHING 37

feature selection in this thesis is based on the nouns in the BOF’s. This is done
with a so called tagger5. Hence, all nouns must be extracted from the BOF’.
This means that:

1. All non-nouns are currently ignored, even though they might have some
(relevant) semantic information. Incorporating these wordcategories in
the algorithm is left for future research.

2. All structural aspects such as the ‘structure’ and ‘complexity’ of the
model (that is, the XML-tree) are not in the algorithm. Currently it is
unclear how this data is related to the problem definition (semantic
matching). Future insights in this field could result in incorporation in
the algorithm.

In short, the first step comes down to extracting a list of nouns from each BOF.
These two lists are matched in the second step. This seems simple: compare
all the words one by one and count the number of ‘matches’. However, the
reality is that the matching algorithm is not so straightforward. Problems
occur with homonyms and synonyms.

Suppose two BOF’s have a homonym (e.g. note) with different meanings in
each BOF (e.g. “musical note” and “a paper note with something noteworthy”).
Then, using our “simple algorithm”, both words would match incorrectly. Now,
suppose two BOF’s have synonyms in them (e.g. “client” and “customer”).
These two synonyms would not match, even though they should.

Obviously, the problem is that the matching algorithm has no understanding
of the words (similar to the fact that computer programs do not understand
the data they are processing (Cover, 1998)). The solution for these problems
is twofold. First, the two sets of nouns must be enriched; semantically
relevant data must be added to deal with different meanings of the words
(tokens). A system called WordNet (Secton 5.2.1) is used for this. Secondly,
the matching algorithm must be improved/extended. The document vector
model (Section 5.2.2) -from the field of information retrieval- is applied.

5.2.1 WordNet

WordNet is an on-line lexical reference system, inspired by psycholinguistic
theories (Miller et al., 1993). It started as a proposal for a more effective
combination of traditional lexicographic information and modern, high-speed
computation. Pyshcolinguistics is an interdisciplinary field of research,

5A tagger is a Machine Learning program that predicts which word-category (e.g.
‘noun’ or ‘verb’) a word has. The tagger that is used in this thesis can be found at
http://ilk.kub.nl/ �zavrel/tagtest.html

CHAPTER 5. SEMANTIC MATCHING 38

concerned with the cognitive bases of the linguistic research field. Research
in this field resulted in the notion that information in a lexicon must be more
then an alphabetised list of words and their meanings (such as the respected
and well known dictionary Oxford English Dictionary) (Miller et al., 1993).
Lexical information -such as word associations- must be incorporated as well.
WordNet is the result of this research, and is organised into word meanings
(synsets).

WordNet divides the lexicon into five categories: nouns, verbs, adjectives,
adverbs and function words. For this thesis, only the nouns are of interest.
According to (Miller et al., 1993), lexical semantics begins with the recognition
that a word is a conventional association between a lexicalised concept and an
utterance that plays a syntactic role. That is, word tokens are associated with
word meanings. These can be represented in a Lexical Matrix (see Figure 5.1).

Word Meanings Word Forms
F1 F2 F3 : : : Fn

M1 E1;1 E1;2

M2 E2;2

M3 E3;3

... . . .
Mm Em;n

FIGURE 5.1: LEXICAL MATRIX
(taken from (Miller et al., 1993))

In Figure 5.1, word forms are listed as headings for the columns; word
meanings as headings for the rows. An entry in a cell of the matrix implies
that the form in that column can be used to express the meaning in that row.
This results in word forms F1 and F2 sharing word meaning M1: they are
synonyms. Word meanings M1 and M2 share word form F2: word form F2 is a
homonym (it is polysemous).

Other relations (antonymy, meronymy and morphological relations) are
represented in WordNet as well. However, they are not of interest for this
thesis. Section 5.2.3 will show how the synonymy- and homonymy relations
are used in the matching algorithm.

5.2.2 Document Vector Model

IR is a science that is concerned with finding the relevant parts in a (large)
set of documents, based on some query. A formal definition of IR is given in
(Fuhr, 1995). The definition is quite technical and formal, but it comes down
to the following: documents and queries can be translated into compatible

CHAPTER 5. SEMANTIC MATCHING 39

document
surrogate

documents
ranked list of

Documents Query

functions

similarity

(document representation)
INDEX LANGUAGE

Index language

FIGURE 5.2: CLASSICAL MODEL OF IR (PAIJMANS, 1999)

representations in such a way that the semantic representations of these two
have a relevance relationship.

Paijmans (Paijmans, 1999) defines that “The Function of any IR system is to
extract relevant items from texts; translate them into the symbols of an index
language; arrange these symbols to improve accessibility and offer them to
the prospective user.”. Figure 5.2 is a graphical representation of the classical
model of IR. This figure explains the general concepts of IR mentioned above.

As Figure 5.2 shows, several aspects of IR should be taken into account.
These aspects are represented by boxes in the figure. Their meaning can be
summarised as follows:

� The document surrogate is the part of the document that is the input to
the IR system. For example, one may choose to enter only a part of the
document into the system (the abstract, the conclusions, the captions) or
choose to enter the full text into the system.

� The document representations are constructed by the system from the
document surrogate. They are stored as the representation of the

CHAPTER 5. SEMANTIC MATCHING 40

Seminar

Information Retrieval

Agents

documentvector

FIGURE 5.3: GRAPHICAL REPRESENTATION OF THE DOCUMENT VECTOR
MODEL

original documents in the symbols of the index language. They usually
are a set of keywords.

� The query is the question to which the user of an IR system would like to
see an answer. Before it is checked with the document representations,
the system also converts it to the index language.

� The similarity functions are (usually mathematical) functions to check
which documents are relevant and which are not, for the selected query.

� The ranked list of documents is the result of the system, for that is the
purpose of it!

One thing that needs to be looked at more closely is the moment of creating
the index (document surrogate). Two situations are possible. First of all, it is
possible to combine the terms in an index prior to searching. This system is
called pre-coordinative. A second possibility is to only allow short terms, and
leave it until the moment that a search is done to create the index. Such a
system is called post-coordinative.

Another aspect that is relevant in this context, is the way the translation to
the index language is done. A distinction must be made between assigned
versus derived indexing. The difference between the two is whether the
keywords that are chosen for use in the index language are taken from
the document itself (derived indexing) or from an independent list of terms
(assigned indexing). The former can be done by computer, but the latter is
usually done manually.

A related aspect is the manner in which words are weighed in an index
language. These wordweights come in two flavours. In (Paijmans, 1999)
these are introduced as plain wordweights and word-document weights.

CHAPTER 5. SEMANTIC MATCHING 41

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

keywords

do
cu

m
en

ts

w(1,1)

w(2,1)

w(3,1)

w(M,1) w(M,2) w(M,3) w(M,N)

w(3,N)w(3,3)w(3,2)

w(2,2) w(2,3) w(2,N)

w(1,N)w(1,3)w(1,2)

key(1) key(2) key(3) key(N)

doc(1)

doc(2)

doc(3)

doc(M)

FIGURE 5.4: DOCUMENT DATABASE IN THE DOCUMENT VECTOR MODEL

Plain wordweights are characterised by the fact that the weight is related
only to the keyword itself. Simply counting how often a keyword occurs, or a
binary representation (1 means that the word occurs, 0 means that it doesn’t)
are examples of this type of weights. The word-document weights, however,
have another characteristic. They take into account that large texts contain
more words than smaller texts. Therefore, the tf.idf of weights distinguishes
between words that occur frequently in all documents, and words that occur
only a few times in (a small number of) documents. The latter are –often– a
good indicator for the contents of these documents. For technical details see
(Salton, 1989).

The document vector model is based on the notion that documents can be
represented by vectors of keywords. For example, suppose a language exists
with only three keywords: “seminar”, “agents” and “Information Retrieval”.
A document vector has, in this situation, three dimensions. To be more
specific, in Figure 5.3 the three dimensions are represented by the axis, and
a document dealing with all three keywords (e.g. this paper) is represented
by the arrow.

Several types of weights can be used for this. The document database can
be represented as a term-document matrix with documents as rows and
keywords as columns. Figure 5.4 depicts this type of document database.

With the document vector model, similarities with a query can be calculated
in several ways. In (Norealt et al., 1981) several of these functions are
discussed. The basic principle on which these functions are based, is that
vectors (documents) that are related are closer than unrelated vectors. Three
examples (taken from (Paijmans, 1999)) of similarity functions on documents
dj and dk are:

CHAPTER 5. SEMANTIC MATCHING 42

� The matching coefficient counts the number of dimensions on which both
documents have a non-zero entry:

sim(dj; dk) = jdj \ dkj

� The Jaccard coefficient is the matching coefficient, penalising for a small
number of shared entries:

sim(dj; dk) =
jdj \ dkj

jdj [dkj

� The Euclidian distance is the well known angle between two n-
dimensional vectors:

sim(dj; dk) =

vuut
mX
i=1

(dji � dki)
2

These similarity functions measure -on a scale from 0 to 1- how similar
two vectors (and thus, two documents) are. Section 5.2.3 will show how the
document vector model is used in the matching algorithm.

5.2.3 Proposed Algorithm

The theoretical basis for this algorithm was described in previous
chapters. Furthermore, Section 5.2.1 describes the working of WordNet
and Section 5.2.2 describes the document vector model. This section, finally,
describes the matching algorithm by combining these.

The algorithm –which takes the XML version of the BOF’s as input– is shown
in Figure 5.5. The first step shown in the figure is the extraction of all words
in both XML-specification. The names of the XML-tags are not included. The
result of this step is two lists of words.

The second step is the selection of all nouns from both lists. For this end a
tagger (see page 35) is used. This step results in two lists with the nouns from
each XML-specification.

The third step uses WordNet to add semantic information to the list with
nouns. For each word, all word meanings are selected. In turn, all synonyms
for each word meaning are taken from WordNet, and added to the noun-lists.
Hence, the result of this step are two (longer) lists with nouns.

These two noun-lists are combined in the fourth step. A ‘wordspace’ is
generated: this is a list of all nouns that exist in both specifications. The
wordspace is used to generate a vector for each specification, using binary

CHAPTER 5. SEMANTIC MATCHING 43

XML-specification XML-specification

List with words List with words

List with nouns List with nouns

Wordspace

List with nouns
and synonyms

List with nouns
and synonyms

Vector Vector

Similarity

FIGURE 5.5: SEMANTIC MATCHING ALGORITHM

CHAPTER 5. SEMANTIC MATCHING 44

wordweights (see Section 5.2.2 for details). This vector has as length the
amount of words in the wordspace; the words that exist in the noun-list (step
three) get a 1, the nouns that do not appear in this list get a 0.

The fifth, and last, step compares the two vectors that were generated in step
four. The Jaccard coefficient is used for this, because it penalises for a small
number of shared entries: if the amount of synonyms added by WordNet (step
three) is big, then there is a high risk of getting many entries that are not
shared between specifications. This would result in a (much to) low similarity
value. This is partly corrected by putting a penalty on a small number of
shared entries. The result of the fifth step is a similarity-value that lies
between zero (no match) and one (full match). A high value implies a better
match.

The result of the algorithm must of course be interpreted. The goal was to find
a metric that helps improve the process of enterprise application integration
(see Section 1.2). Interpreting the results of the algorithm is fairly intuitive.
If the semantic match is near zero, then the two systems have little to do
with one another. Integrating those systems is expected to be very difficult.
If the semantic match is near one, then the two system are expected to be
nearly identical. Integrating them is probably an ‘easy task’. For values
in between, the simple rule “the higher the match, the better the semantic
match” is applicable. Additional research can be used to identify which parts
of the two systems are similar can be done. This is, however, not covered in
this thesis. The algorithm is demonstrated in the next chapter.

5.3 Limitations

In the current implementation, the algorithm is highly dependent on the
tagger, and on WordNet. This means that both the tagger and WordNet must
be of high quality if the algorithm is to perform as expected.

The quality of the tagger is discussed in (Daelemans and Zavrel, 1996).
The authors have conducted three experiments to test the tagger (which
is based on memory based learning (MBL), see e.g. (Mitchell, 1997) for
details). The experiments are based on ‘common practice in Machine
Learning’: independent training- and test sets are used in combination with
a 10-fold cross-validation approach. Based on their experiment, the authors
conclude that “a memory-based approach to large-scale tagging is feasible
both in terms of accuracy . . . and also in terms of computational efficiency”
(Daelemans and Zavrel, 1996). The following accuracies are reported:

CHAPTER 5. SEMANTIC MATCHING 45

accuracy percentage
known words 96:7 94:5
unknown words 90:6 5:5
total 96:4 100:0

The table shows that 94:5 percent of the words that were used in the
experiment were ‘known’ by the tagger. Of these words, 96:7 percent was
classified correctly. Of the ‘unknown’ words (5:5 percent), 90:6 percent was
classified correctly. This leads to an overall performance of 96:4 percent.

Unfortunately, no papers were found on the quality / performance of WordNet.
However, (Miller et al., 1993) suggests that the (psycho) linguistic framework
underlying WordNet is correct. Small experiments with the WordNet system
(e.g. (Leon, 2000)) suggest that it performs quite well: “WordNet has proven
to be an excellent source of English words, their definitions, and their
interrelations.”.

Also note that the algorithm has some intrinsic limitations. First of all, it
treats specifications as holistic entities, it is difficult to deal with ‘partial
matches’: using the algorithm alone, it is unclear which individual BO’s from
one specification are similar to BO’s from the other specification. Secondly,
the algorithm only takes into account the nouns in the Business Object
Frameworks (based on the results presented in (Hoppenbrouwers, 1997;
Mirbel, 1997)). Other features (other word categories such as verbs and
adverbs, as well as features dealing with the complexity/detaildness of
the models) are important as well. In the current implementation of the
algorithm, however, they are ignored.

Chapter 6

Proof of Concept

The algorithm for semantic matching that was derived in the previous
chapter(s) is tested in this chapter. The ultimate goal of the algorithm was
to find out how easy two systems can be integrated (Enterprise Apllication
Integration, or EAI). The way this is done is through computing how similar
two Business Object Frameworks are and using this as an indicator for ease
of integration.

There are two strategies for checking the (results of) the algorithm: proof
of concept and experimentation. Both are used in this this thesis. Firstly,
the algorithm is implemented in a small computer program. The results
of this program are verified by comparing its results with the opinion of
a human expert. The comparison consists of checking if the algorithm
distinguishes between systems that are similar and systems that are
dissimilar. Furthermore the level of similarity (exactly how similar are the
two systems) is checked.

This chapter is organised as follows. In Section 6.1 the details of how the
experiment was conducted are described. The experiment is set up as a
five-step process that starts with constructing sample data and ends with
comparing the results of the human expert with the results of the algorithm.
In Section 6.3 the current version of software that was developed for this
thesis is discussed. Section 6.4 compares the results of the software with
the opinion of the human expert, and suggests some improvements on the
algorithm.

6.1 The Experiment

A small experiment was constructed in order to find out if the algorithm
recognises two systems that are similar. The context of the experiment is

46

CHAPTER 6. PROOF OF CONCEPT 47

Enterprise Application Integration (EAI, see Section 1.1). Since the process of
integrating (computer) systems turns out to be extremely difficult and costly,
the goal of this thesis is to find out how easily two enterprise systems can
be integrated. In this section the algorithm that measures how similar two
systems are (the assumption is that a higher similarity results in an easier
integration process) is tested using a (small) experiment.

The setup for the experiment is based on (Foltz, 1996). In this article, the
effectiveness of a so called Latent Semantic Analys (LSA, a statistical model of
word usage that permits comparisons of semantic similarity between pieces
of textual information) is tested. This is achieved by comparing its results
with predictions made by two human raters. The two human raters, who are
‘highly familiar’ with the field, performed their task independently of each
other, and without prior knowledge of the results of LSA.

In this thesis, the results of the derived algorithm must be verified. Hence,
its results will be compared with the opinion of a (single) human expert.
The obvious way to do this is to take three specifications (of which two
specifications are similar and one unrelated) as a basis. Independent of each
other, the human expert and the algorithm estimate / calculate how similar
the specifications are. In short, the experiment consists of the following steps:

1. The first step is to gather three BOF’s. One BOF is already explained
in Section 2.3 (the UML model is in Figure 3.5 on page 21). Two more
examples are summarised in Section 6.2.

2. The second step is the creation of a program that takes two XML-
representations of BOF’s as input and performs the semantic match (See
Figure 5.5). The details on this program are in Section 6.3.

3. With the examples and the program ready, the similarity between the
three specifications can be computed. These results are summarised in
Section 6.4.

4. The three specifications are shown to a human expert: Hans Weigand
(H.Weigand@kub.nl). He was asked to estimate how similar the three
BOF’s are (a percentage), as well as a short explanation on his choice.

5. The results of the human expert are compared with the results of the
algorithm in Section 6.4.

6.2 Examples

In the previous section it is explained that three examples are needed for
the experiment. The first example (Order checking) is already discussed in

CHAPTER 6. PROOF OF CONCEPT 48

<<process>>
order taking

salesman
client

<<thing>>
Packing list

shipping info
price
checking info

<<person>>
salesman

talk to client
create packing list

name
social security number
phone number

<<thing>>
CD

artist
tracks
date

<<thing>>
Book

author
title
ISBN

<<thing>>
goods

price

<<person>>
client

order goods
bargain price

name
budget
goods to purchase

1

1
1 1

1 1

1

**1

talks to

creates

orders

FIGURE 6.1: UML REPRESENTATION OF THE TAKING ORDER PROCESS

Section 2.3 (the UML model is in Figure 3.5 on page 21). This means that two
more examples are needed. In order to verify that the algorithm differentiates
between specifications that are similar and specifications that are dissimilar,
two of the examples are to be similar, and that the other is to be (totally)
unrelated.

In the following sections two more examples are discussed briefly: Order
taking and Making backups. The order taking process is designed to be
similar to the order checking process. The backup process is designed to be
unrelated to the two other specifications

6.2.1 Order Taking

Clients can call to one of the salesmen from our example company. After
mentioning which goods he/she might want to purchase, a price can be
bargained. The salesman creates a packing list based on the goods that a
client wishes to purchase. These goods can be either cd’s or books. The UML
representation of the model can be found in Figure 6.1.

CHAPTER 6. PROOF OF CONCEPT 49

<<person>>
operator

username
password
privileges

operator
backup server
database

<<thing>>
backupserver <<thing>>

computertapes
hard disks

<<process>>
backup

<<thing>>
database

make backup

user data
client data
sales data
aquisition data

1

1

1

1

1
*

supervises

saved on

FIGURE 6.2: UML REPRESENTATION OF BACKUP PROCESS

6.2.2 Making Backups

Data in (online) companies is often very valuable; so a good backup system
is needed. An operator starts the backup process. Databases with all sorts
of data (users, clients, sales and aquisitions) are sent to a backupserver.
Backups are stored on either a disk or a tape. The UML representation of the
model can be found in Figure 6.2.

6.3 Software

Part of the experiment was implementing the algorithm described in
Section 5.2.3. The algorithm must take XML representations (which are valid
according to the DTD in Appendix A). The steps described in Figure 5.5 must
be followed. The algorithm is implemented in the programming language
Python1. In short, the program has to perform the following steps:

1. Read the XML file and parse it. That is, extract all words that are
between XML-tags, and the names of the XML-classes from the XML
document

2. Use a tagger to select only the nouns from the list with words
1The details on the programming language are not included in a thesis. For introductions

see e.g. http://www.python.org/doc/Intros.html

CHAPTER 6. PROOF OF CONCEPT 50

Parser

load(file)
handle_data(data)
start_class(attrs)
getData()

XMLParser

Preprocessor

load(data[])
tagNoun(srvr,prt,data)
getData()

myWn

load(word)
_getSyns(word)
getSynList()

match

load(La[],Lb[])
_makeWS(La[],Lb[])
_makeVector(L[])
jaccard()

Main

2 2

* 1

11

FIGURE 6.3: IMPLEMENTATION OF THE ALGORITHM
The source code of this program is in Appendix C

3. Use WordNet to add all synonyms of all word meanings for each noun in
the list.

4. Match the two lists using the document vector model:

(a) generate a wordspace

(b) generate two vectors

(c) calculate the distance between the two vectors using the Jaccard
coeffiecient

In the current implementation, each step in the list corresponds to a
Python class. This results in the classes parser (is a subclass of the
default xmllib.XMLParser), tagger , myWn(heavilly uses the default class
wntools) and match . Classes were used for two reasons. First of all, they
provided a convenient way to structure the program so that the code can
be built in an incremental manner. The second reason is that, using the
object oriented paradigm makes it easy to adapt or extend the program. For

CHAPTER 6. PROOF OF CONCEPT 51

example, currently the algorithm uses the Jaccard coefficient to determine
the similarity between two noun-lists (the last step in Figure 5.5). However,
at a later point it might be interesting to try a different coefficient (e.g. the
Euclidian distance metric, see Section 5.2.2). This can be achieved quite
easily by creating a new class (and use inheritance) for this metric.

In the body of the program (the main loop) the classes are instantiated. The
details are shown in Figure 6.3, which is a UML class diagram. The code of
the algorithm can be found in Appendix C.

The application runs from the UNIX-command line2 as follows:

[bas@kubstu:˜/work/scripts$./thesis.py example.xml example2.xml
Parsing example.xml...done!
Parsing example2.xml...done!
Retrieving nouns first spec...done!
Retrieving nouns second spec...done!
Add synonyms with wordnet, first spec...done!
Add synonyms with wordnet, second spec...done!
similarity is 0.326693227092

The current implementation prints both verbatim status messages that show
the progress of the algorithm, and the actual similarity between the two
input specifications. At a later stage other useful statistics can be printed
at runtime as well, such as the length of the noun-lists and the amount of
words that were added by WordNet3.

6.4 Results

Section 6.2 discusses three examples that are used in this experiment.
Furthermore, Section 6.3 discusses the current implementation of the
algorithm. The program was fed each possible combination of two
specifications from the set of three, after which it calculated the similarity
between the two selected specifications.

To be able to verify whether the output of the algorithm makes sense, a
human expert (Hans Weigand) was asked to estimate the similarity between
the specifications (without showing the results of the algorithm)4.

2It was developed on a linux-machine running Python version 2.1.1
3Upon implementation, command-line arguments to the program can serve as ‘switches’

for these options
4From a statistical point of view, this proves nothing. An experiment with a large number

of specifications and human exports is needed to be able to show –with a certain level of
confidence– whether the algorithm works or not. An experiment of that magnitude is out of
the scope of this thesis.

CHAPTER 6. PROOF OF CONCEPT 52

specification numbers the algorithm the human expert
1,2 0:326 0:40
1,3 0:008 0
2,3 0:035 0:1

Specification 1: ‘Order checking’ (page 21)
Specification 2: ‘Order taking’ (page 48)
Specification 3: ‘ Making backups’ (page 49)

TABLE 6.1: RESULTS OF THE ALGORITHM AND A HUMAN EXPERT

Previous sections explained that two of the three specifications are designed
to be fairly similar. The third specification is designed to be totally different
then the other two. Hence, it was expected that both the human expert and
the program agree that the order checking- and order processing specifications
are similar, and that the database backup specification is unrelated to both.
Table 6.1 shows the results of both.

The table shows that the human expert agrees with the algorithm that the
first two specifications are fairly similar. He makes the following observation:
“The first and second BOF match a lot. They use the same concept of ‘thing’
with subtypes ‘cd’ and ‘book’. They have (at least on the level of words) the
same concept of ‘packing list’. The other object types are different but this
is no problem, it can be considered to be complimentary. The relationship
between ‘packing list’ and ‘goods’ is clear in the second model, while in the
first model there is only an indirect relationship via parcel. But the models
can be said to be complimentary.”.

They also agree on the fact that the third specification is totally different
from the other two specifications. The results are both near zero. The
following observation was made by the human expert: “The third model is
very different. There are no overlapping objects. The only link with the other
two models is in the client data that is stored in the database. The object
type ‘client’ appears in the second BOF. Structurally, the representations are
very different. Perhaps there is also a link between acquisition data and the
‘things’ in the other two diagrams (‘cd’, ‘book’), but both the structure and the
naming is different.”.

The observations of the human expert are, of course, true. The examples were
constructed in such a way that two of them are similar, and that one is totally
different. The main difference between the estimate of the human expert and
the algorithm is how similar specifications one and two are. The estimate is a
little (approximately 0:08) higher. This higher estimate is probably due to the
way the algorithm works.

CHAPTER 6. PROOF OF CONCEPT 53

Because of the highly specific application domain, a lot of words might not
be in WordNet. This could lead to unexpected outcomes of the algorithm.
Words might have many different meanings; which, in turn, can have many
different word meanings. Because they are all added, the vectors can grow
very long which might lead to unexpected outcomes also. Based on the
observations by the human expert, it becomes apparent that the algorithm
does not understand what it is processing. Humans have the ability to
recognise that two objects might be similar, or that there is an indirect
relationship between objects. On the upside, the algorithm does differentiate
between specifications are similar and specifications that are not similar.
This suggests that it handles different naming correctly by using WordNet.

6.5 Conclusions and Suggested Improvements

Interpreting the results of the algorithm and the human expert lead to the
same conclusion: the order taking process and the order checking process are
-partially- similar. Integrating them, hence, should be relatively easy (see
Section 5.2.3 for details). The backup process is, indeed, ‘totally different’.
Integrating this process with one of the others is probably hard / might not be
possible (because they have almost nothing in common). This result leads to
the conclusions that, even though the experiment is relatively small, it is fair
to conclude that the algorithm works as expected.

The analysis in the previous section shows that additional research is needed
to find improvements for the algorithm. The following options come to mind:

� The current implementation of the algorithm takes only the words (that
is a list with nouns, with all synonyms) in a specification into account.
Aspects such as the size and complexity of the model / XML-tree can be
added, if an appropriate (semantic-based) metric can be found;

� Currently the algorithm uses a binary weighting scheme. That is: words
(nouns) occur in a specification or not. Furthermore, the nouns that are
added by the algorithm from WordNet also use this scheme. It is likely
that the algorithm will perform better if a more elaborate weighting
scheme is implemented. This scheme ought to take the following into
account:

– Words that occur in the specification must get a higher score than
the synonyms that are added;

– Words that are important must have a higher score than words that
are less important. For example, one could argue that class names
are more important than attribute names. In terms of Machine

CHAPTER 6. PROOF OF CONCEPT 54

Learning theory, words with a high Information Gain value must
get a higher score (see Section 5.2 for details);

� The current similarity metric (Jaccard coefficient) penalises the
matching coefficient for a small number of shared entries. Furthermore,
it depends on a binary weighting scheme. With the ‘improved weighting
scheme’ a different similarity metric can be tested as well. This scheme
must make use of the new weighting scheme (eg by using the Euclidian
distance metric (see Section 5.2.2).

Exploring these, and other, options is left for future research.

Chapter 7

Conclusion

Many organisations are integrating their computer systems these days;
either because the old systems need replacement, because new (web-based)
applications that need integration with back-end systems are introduced,
or for some other reason. This process –Enterprise Application Integration
(EAI)– is both costly and risky.

In the previous chapters an algorithm for supporting the process of EAI is
developed step by step. Both the algorithm, and the theory on which it is
based are summarised briefly in this chapter after which conclusions are
drawn. Finally, suggestions for future research are summarised at the end
of this chapter.

7.1 Overview

In Chapter 1 the context and problem definition of this thesis are described.
The three main reasons for examining the process of EAI are the high reliance
on computer systems, the (monetary) costs that are associated with them,
and the fact that many computer systems are (in the process of getting)
integrated. Unfortunately, integrating computer systems –especially if they
are big and complex– is not always as easy as people think. Simply put: EAI
is an important, risky and expensive activity and it is therefore important to
pay attention when starting an EAI-project.

EAI is –in this thesis– examined using three dimensions: EAI is examined at
the conceptual (as opposed to implementation) level, with a focus on static (as
opposed to dynamic) and semantic (as opposed to syntactic) aspects. The basic
assumption is that computer systems can be modelled using Business Objects
(BO). A BO is a coarse grained abstraction of all artefacts that are needed to
represent a person, place, thing or process in a given business domain (see

55

CHAPTER 7. CONCLUSION 56

Definition 2.1). A framework representing a business (application) is called a
Business Object Framework BOF (see Definition 2.2).

Given two specifications of two (complex) computer systems. The assumption
underlying this thesis is that ‘similarity’ between these systems is a good
indicator for estimating how easy they can be integrated. Hence, the goal of
this thesis is to answer the following research question:

Given the specifications of two systems in terms of Business
Objects, how can the similarity (at the semantic level),
between these two systems be calculated in order to determine
how easy these systems can be integrated?

The first step (see Figure 1.2 for an overview of the steps) was to find
a notation for these business object frameworks. The unified modelling
language (UML) –which is the defacto standard for specifying, visualising,
constructing and documenting the artifacts of software and business
systems– was chosen for this. Since the focus of this thesis is on static aspects
of (computer) systems, the class diagram was selected as a notation for BOF’s.
Additional constraints on the model can be added using the Object Constraint
Language (OCL). For details on UML and OCL see Chapter 3.

Since UML is a graphical notation, it is not very well suited as input for a
computer program. This is inconvenient, since the algorithm is to take two
specifications as input, and calculate the similarity between them. Hence,
a mapping to a textual notation is to be found. In Chapter 4 a mapping to
the eXtensible Markup Language (XML) is described. Even though several
mappings from UML to XML are in use (such as XMI and UXF) today, a new
–simple– DTD is created for this thesis. The details on this approach are
described in Section 4.4; the DTD itself can be found in Appendix B.

The concept ‘semantics’ is used for many things in literature. In Section 5.1
several examples are discussed, and a working definition for this thesis
is derived. Two measurements play an important role in this definition:
semantic likeness and semantic ambiguity. The working definition (see
Defintion 5.1) is based on them, and basically deals with finding out how
similar the meaning of two (or more) things are. In other words, the algorithm
must find out how similar the meaning of two computer systems is. It is
based on two pillars: WordNet and the Document Vector Model. In short, the
algorithm takes the following steps (See Figure 5.5):

� Extract all words that are in the XML-representations of the BOF’s and
stores them in two lists;

� Select all nouns from the lists using a tagger;

CHAPTER 7. CONCLUSION 57

� Use WordNet to enrich the two noun-lists by adding synonyms (words
can have multiple wordmeanings; in this case all synonyms for each
wordmeanings are added to the list);

� Create a wordspace and use this to create two vectors, using binary
wordweights: words that exist in the noun-list get a 1; nouns that do
not appear in this list get a 0.

� Use the Jaccard coefficient to calculate the similarity between the
two noun-lists (and hence, the two specifications of the two computer
systems)

Interpreting the results of the algorithm is –to a certain extent– intuitive.
If the semantic match is near zero, then the two systems have little to do
with one another. On the other hand, if the match is near one, then they
are (expected to be) nearly identical. As stated before: it is expected that a
higher similarity results in an easier integration process. If the results are
unclear, then additional research can be used to identify which parts of the
two systems are similar.

7.2 Discussion

A small experiment was designed to test whether the algorithm differentiates
between specifications that are similar, and specifications that are dissimilar.
Furthermore, the level of similarity is checked. Three BOF’s (two of which
are similar) were constructed to this end. They are described briefly
in Section 6.2. Also, a Python-program was built that implements the
algorithm. The three specifications were converted to an XML-representation
and fed to the program. The results of the program were compared with the
opinion of a human expert.

Both the Python-program and the human expert agreed on which
specifications are similar, and which are not (exact results are in Table 6.1).
The main difference between the estimate of the human expert and the
program is exactly how similar the specifications are. In short, the estimate
for the two similar systems is approximately eight percent higher then the
result of the program; for the dissimilar specifications the algorithm and the
human expert agree on the level of similarity (deviations are negligible).

As stated before, it is clear that additional research (in the form of a large
scale experiment) – with more data (BOF’s) and more independent human
experts – is needed to verify this result. Furthermore, several improvements
on the algorithm can be considered, such as a metric for the complexity / size
of the XML-tree and add that to the current model, using a different weighting

CHAPTER 7. CONCLUSION 58

scheme based on the ‘importantness’ of words, and finally the implementation
of different similarity function (see also Section 6.5). The following section
describes a possible setup for such an experiment.

7.3 Future work

The first thing that must be done is verifying the results presented in this
thesis by means of an experiment. The setup of the experiment should
contain several elements. First of all, the current version of the algorithm
must be tested with a multitude of Business Object Framework specifications,
and several independent human experts. Statistical analysis can be used to
verify whether the opinion of the human experts differs significantly from the
results of the algorithm. To achieve this, all the specifications are matched
against one another, thus compiling a list with pairs of specifications as
index, and their similarity as value. After the list is compiled it must be
sorted (most similar pair first, least similar pair last). If the ranking of the
lists is the same –a predefined deviation is allowed– then it is safe to conclude
that the algorithm really works.

A similar setup can be used to test additions to the algorithm. Additions are
preferably ‘modular’; meaning that if they can be added either alone, or in
combination with others. The results of the newly constructed version of the
algorithm can be compared to the ‘old’ results to check whether the additions
are a (significant) improvement or not.

Assuming that the algorithm works, it might be applicable in other domains
as well. A requisite for this is that the task at hand is a mapping task, and
that specifications / documents are represented in an XML vocabulary. An
example is E-service discovery, where the right (online) service with the right
capability is found to represent a business process.

Taking into account the boundaries of the research sketched in the previous
section it is fair to conclude that the algorithm really works as expected.
The main contribution of this research, hence, is using WordNet and the
document vector model together for semantically matching (the models of)
two enterprise systems: the document vector model –which comes from the
field of Information Retrieval– uses WordNet to ‘simulate’ that the algorithm
actually understands the data it is processing.

In conclusion: the algorithm derived in this thesis is a good first step.
However, the road is long and many more steps have to be taken to get where
we want: easy integration of enterprise applications.

Appendix A

DTD for mapping UML to XML

<!-- top-level is the model-node -->
<!-- it holds 1-or-more classes -->
<!ELEMENT model (class)+>
<!ATTLIST model

name CDATA #IMPLIED>

<!-- class definition -->
<!-- can hold 1-or-more of several uml-constructs -->
<!ELEMENT class (attr|method|role|ocl|composition|

specialisation|note)+>
<!ATTLIST class

type (process|person|place|thing) #REQUIRED
name CDATA #REQUIRED
id CDATA #REQUIRED>

<!-- attribute definition -->
<!ELEMENT attr (#PCDATA)>

<!-- method definition -->
<!ELEMENT method (#PCDATA)>

<!-- role definition -->
<!ELEMENT role (#PCDATA)>
<!ATTLIST role

peer CDATA #REQUIRED>

<!-- ocl definition -->
<!-- could contain a lot of different things -->
<!-- therefore ’ANY’ applies -->
<!ELEMENT ocl (pre|post|doc|context|type)+>
<!ELEMENT pre (#PCDATA)>
<!ELEMENT post (#PCDATA)>
<!ELEMENT doc (#PCDATA)>
<!ELEMENT context (#PCDATA)>
<!ELEMENT type (#PCDATA)>

59

APPENDIX A. DTD FOR MAPPING UML TO XML 60

<!-- composition definition -->
<!-- a class can hold classes inside a composition -->
<!ELEMENT composition (class)+>

<!-- specialisation definition -->
<!-- specialisation refers to another class id -->
<!ELEMENT specialisation EMPTY>
<!ATTLIST specialisation

ref CDATA #REQUIRED>

<!-- note definition -->
<!ELEMENT note (#PCDATA)>

Appendix B

XML example

<?xml version="1.0" standalone="no" ?>
<!DOCTYPE model SYSTEM "file://d|scriptie/umlxml.dtd">

<!-- Author: Bas van Gils <bas.vangils@home.nl> -->
<!-- Date : October 17th 2001 -->
<!-- About : This model is an XML-representation of a UML-model -->
<!-- BEWARE: This model comes with umlxml.dtd -->

<model>

<class type="process" name="checking process" id="pro1">

<attr>storekeeper</attr>
<attr>parcel</attr>

<method>check contents</method>
<method>notify</method>

<role peer="th1">is checked in</role>

<ocl>

<doc>
if the check contents method returns
false, then someone must be notified
that the checked parcel was not ok

</doc>

<context>checking process.check contents()</context>

<type>Boolean</type>

<pre />

<post>
result=self.check contents != true implies self.notify

</post>

61

APPENDIX B. XML EXAMPLE 62

</ocl>

</class>

<class type="thing" name="parcel" id="th1">

<attr>packing list</attr>
<attr>goods</attr>

<method>add goods</method>
<method>remove goods</method>

<role peer="pla1">is stored in</role>

<composition>

<class type="thing" name="goods" id="th2">

<specialisation ref="th3" />
<specialisation ref="th4" />

</class>

<class type="thing" name="packing list" id="th5">

<attr>shipping info</attr>
<attr>price</attr>
<attr>checking info</attr>

</class>

</composition>

</class>

<class type="thing" name="cd" id="th3">

<attr>artist</attr>
<attr>tracks</attr>
<attr>date</attr>

</class>

<class type="thing" name="book" id="th4">

<attr>author</attr>
<attr>title</attr>
<attr>isbn</attr>

</class>

<class type="person" name="storekeeper" id="per1">

<attr>parcels to check</attr>

APPENDIX B. XML EXAMPLE 63

<attr>name</attr>
<attr>social security number</attr>

<method>add goods to list</method>
<method>remove goods from list</method>

<role peer="pro1">participates in</role>
<role peer="pla1">seeks parcel in</role>

</class>

<class type="place" name="storehouse" id="pla1">

<attr>parcels</attr>

<method>store parcel</method>
<method>remove parcel</method>

<note>
isles are sorted using a country code (e.g. UK and NL)

</note>

</class>

</model>

Appendix C

Python source code of the
algorithm

import os
import re
import socket
import string
import sys
import time
import wntools
import wordnet
import xmllib

####################
module variables
####################
os.putenv("WMHOME","/home/users/bas/wn")
TAGSERVER = "kubsuw.kub.nl"
TAGPORT = 7124

###########
classes
###########
class parser(xmllib.XMLParser):

"""specialised Parser for XML-files

the load(file) method reads a file one line at a time,
feeds it to the inherrited XMLParser.

the handle_data() method gets rid of needless whitespace
and punctions before storing all words in the XML-spec

the getData() method returns the stored words (list)"""

def __init__(self):
"""__init__()
constructor initialises the Parser
and self.__data"""

xmllib.XMLParser.__init__(self)
self.__data = []

def load(self,file):
"""load(file)
load the file, read it one line at a time
feed each line to the Parser"""

while 1:
s = file.readline()
if not s:

no more lines was available
break

feed the line to the Parser
self.feed(s)

self.close()

def start_class(self,attrs):
"""handler for class start-tags
stores the name-attribute in this start-tag"""
try:

self.__data.append(attrs["name"])
except:

print "Error in method start_tag(): \n\t no attribute ’name’ found"

64

APPENDIX C. PYTHON SOURCE CODE OF THE ALGORITHM 65

def handle_data(self,data):
"""handler for data (stuff between xml-tags)
only stores data of none-zero length
also converts whitespace to a single space-character"""

if len(data) <> 0:
get rid of needless whitespace
and punctuation ("\W" = whitespace)
data = re.sub("\W"," ",data)
self.__data.append(data)

def getData(self):
"""getData()
returns the class attribute self.__data"""

return self.__data

class tagger:
"""specialised tagger: the goal is to take
a list with word-groups as input and convert it into
a list with nouns

the load() method takes a list of word-groups as
input and split it into words

the getData() method returns the stored words (list)

the tagNoun() method takes a list of words as input
uses a ‘tagger’ to select only nouns. The noun-list
is returned """

def __init__(self):
"""__init__()
constructor initializes class variables"""

self.__data = []

def load(self,data):
"""load(data)
parse the lines from the passed in data (a list),
splits each item on whitespace
and store all unique words in a class variable"""

for item in data:
tlist = string.split(item)
for i in tlist:

self.__data.append(i)

def tagNoun(self,SRVR,PRT,data):
"""tagNoun(SRVR,PRT,data)
loop over the passed in data-list (words)
use a tagger to select only the nouns
returns a list with nouns"""

nouns = []

socket to ilk-tagger (Thanks Bertjan :-)
sockobj = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
sockobj.connect((SRVR,PRT))

DEBUGGED: server sends a welcome mesg
sockobj.recv(1024)

precompile regexp for speed-optimisation
nouns have these tags:
NN : Noun, common, singular or mass
NNP : Noun, proper, singular
NNS : Noun, proper, plura
patt = re.compile("/{1,2}NN[PS]?")

for item in data:
make sure everything is lowercase
before sending it over the socket
sitem = "%s \n" % (string.lower(item))
sockobj.send(sitem)

DEBUG: keep reading untill
the socket returns only whitespace
rdata = ""
while 1:

more = sockobj.recv(1024)
rdata = rdata + more
if re.search("\s+",more):

no more data: break from the loop
break

search for nouns only
if patt.search(rdata):

noun = patt.sub("",rdata)

DEBUG: there is a single space
after each noun which is a problem

APPENDIX C. PYTHON SOURCE CODE OF THE ALGORITHM 66

for the wordnet connection (class myWn)
nouns.append(re.sub(" +","",noun))

sockobj.close()
return nouns

def getData(self):
"""getDta()
returns the class attribute self.__data"""

return self.__data

class myWn:
"""specialised acces to WordNet

load(word) loads a word to the WordNet-connection
uses the _getSyns() method to store a list with synonyms
in the class variable synlist

_getSyns() queries WordNet for the class variable self.word
all synonyms from all word meanings (just assume it’s
a homonym) are retrieved and returned

getSynList() returns the list of synonyms in the class
variable self.synlist"""

def __init__(self):
"""__init__()
set class variables to empty strings"""

self.word = ""
self.synlist = []

def load(self,word):
"""load(word)
load a word and use _getSyns() to querie WordNet
for it’s synonyms. The list of synonyms is stored in
the class variable self.synlist"""

self.word = word
self.synlist += self._getSyns(word)

def _getSyns(self,word):
"""_getSyns()
queries WordNet for the class variable self.word
all synonyms from all word meanings (just assume it’s
a homonym) are retrieved and returned"""

synonym-list
syns = []

try to retrieve wordmeanings via wordnet
try:

wmeanings = wntools.N[word].getSenses()
found = 1

except KeyError:
found = 0

if the word was not found in wordnet
append only the word
else append all synonymns as well
if not found:

syns.append(word)
else:

loop over all word-meanings
for meaning in wmeanings:

convert meaning to string
get rid of annoying characters: {},’
items = string.split(re.sub("[{},’]" , "" , str(meaning)))

use a boolean to check if the string "noun:" is found
(after which the nouns are listed)
found_noun = 0

loop over the owrds in a word-meaning-string
for i in items:

append current word to the
list if the "noun:"-string was found
if found_noun <> 0:

syns.append(i)

change boolean from 0 to 1 if the
string "noun:" is found
if re.search("noun:",i):

found_noun = 1
return syns

def getSynList(self):
"""getSynList()
returns the list in the class variable self.synlist"""

APPENDIX C. PYTHON SOURCE CODE OF THE ALGORITHM 67

return self.synlist

class match:
"""class match: specialised vectorspace-based matching class

__init__(): initializes all class variables (word-lists,
wordspace, vectors)

load(1a,1b): loads lists 1a and 1b in class variables
based on these two lists a wordspace is built (using
method _makeWS() which is stored in class variable.
Two vectors are built based on the wordspace, using
method _makeVector(). Vectors are stored in class variables

_makeWQS(a,b): makes a wordspace. That is, the two input
lists are joined (a AND b).

_makeVector(list): makes a binary vectory (0 if a word is
not in the wordspace, 1 if it is in the wordspace)

jaccard(): actual similarity-function. Based on
Paai’s phd-thesis: "explorations in the document
vector model of information retrieval" """

def __init__(self):
"""__init__(): initializes all class variables (word-lists,
wordspace, vectors)"""

self.match = 0
self.la = [] # words in spec 1
self.lb = [] # words in spec 2
self.ws = [] # wordspace = (a OR b)
self.v1 = [] # vector 1
self.v2 = [] # vector 2

def load(self,la,lb):
"""load(1a,1b):
loads lists 1a and 1b in class variables based on these
two lists a wordspace is built (using method _makeWS()
which is stored in class variable. Two vectors
are built based on the wordspace, using method
_makeVector(). Vectors are stored in class variables"""

self.la = la
self.lb = lb
self._makeWS(self.la,self.lb)
self.v1 = self._makeVector(la)
self.v2 = self._makeVector(lb)

def _makeWS(self,a,b):
"""_makeWQS(a,b):
makes a wordspace. That is, the two input
lists are joined (a AND b)."""

self.ws = a + [i for i in b if i not in a]
self.ws.sort()

def _makeVector(self,list):
"""_makeVector(list):
makes a binary vectory (0 if a word is not in the
wordspace, 1 if it is in the wordspace) """

v = []

loop over the wordspace
for i in self.ws:

if i in list:
v.append(1)

else:
v.append(0)

return v

def jaccard(self):
"""jaccard():
actual similarity-function. Based on
Paai’s phd-thesis: "explorations in the document
vector model of information retrieval" """

if len(self.v1) <> len(self.v2):
sys.exit("Error in jaccard(): v1 and v2 must have same length")

a_and_b = 0
a_or_b = 0

for i in xrange(0,len(self.v1)):

if both are 1, then
a_and_b (numerator) is increasted
if (self.v1[i] == 1) and (self.v2[i] == 1) :

a_and_b += 1

if one of the two is 1, then
a_or_b (denominator) is increasted

APPENDIX C. PYTHON SOURCE CODE OF THE ALGORITHM 68

if (self.v1[i] == 1) or (self.v2[i] == 1):
a_or_b += 1

if a_or_b == 0:
divide through 0 is illegal
sim = None

else:
sim = float(a_and_b) / float(a_or_b)

return sim

#############
main loop
#############
if __name__ == "__main__":

two files must be passed in
try:

file1 = sys.argv[1]
file2 = sys.argv[2]

except:
sys.exit("Error: need two files")

parse the two xml-files
returns all words in the xml-files
sys.stdout.write("Parsing " + file1 + "...")
Parser1 = parser()
Parser1.load(open(file1))
sys.stdout.write("done!\n")

sys.stdout.write("Parsing " + file2 + "...")
Parser2 = parser()
Parser2.load(open(file2))
sys.stdout.write("done!\n")

use the tagger-class to
extract all nouns from the lists of
words (previous step)
sys.stdout.write("Retrieving nouns first spec...")
prep1 = tagger()
prep1.load(Parser1.getData())
words1 = prep1.getData()
nouns1 = prep1.tagNoun(TAGSERVER,TAGPORT,words1)
sys.stdout.write("done!\n")

sys.stdout.write("Retrieving nouns second spec...")
prep2 = tagger()
prep2.load(Parser2.getData())
words2 = prep2.getData()
nouns2 = prep2.tagNoun(TAGSERVER,TAGPORT,words2)
sys.stdout.write("done!\n")

use the wordnet-class to
add semantically relevant nouns
(all synonyms of all word meanings)
sys.stdout.write("Add synonyms with wordnet, first spec...")
results1 = []
for w in nouns1:

myw1 = myWn()
myw1.load(w)
t1 = myw1.getSynList()
add only the items that
were not in the list just yet
for i in t1:

if i not in results1:
results1.append(i)

sys.stdout.write("done!\n")

sys.stdout.write("Add synonyms with wordnet, second spec...")
results2 = []
for w in nouns2:

myw2 = myWn()
myw2.load(w)
t2 = myw2.getSynList()
add only the items that
were not in the list just yet
for i in t2:

if i not in results2:
results2.append(i)

sys.stdout.write("done!\n")

use the match-class for matchting
first make vectors, then run the
similarity algorithm
mm = match()
mm.load(results1,results2)
similarity = mm.jaccard()
sys.stdout.write("similarity i s " + str(similarity) + " \n")

Bibliography

Bonar, J. (1997). Business objects for front-office applications: Making domain
experts full partners. OOPSLA.

Booch, Christerson, Fuchs, and Koistinen (1999). UML for XML Schema
Mapping Specification.
http://www.rational.com/uml/resources/documentation .

Brodsky, S. (1999). XMI Opens Application Interchange.

Carlson, D. (2001). Modeling XML Applications with UML: Practical e-
Business Applications. Addison-Wesley.

Casanave, C. (1995). Business objet architectures and standards. OOPSLA.

Cover, R. (1998). The XML Cover Pages, XML and Semantic Transparency.
http://www.oasis-open.org/cover/xmlAndSemantics.html .

Daelemans, W. and Zavrel, J. (1996). Mbt: A memory-based part of speech
tagger-generator. WVLC.

Digre, T. (1995). Business application components. OOPSLA.

Douma, S. and Schreuder, H. (1998). Economic Approaches to Organizations.
Prentice Hall, 2 edition.

EDI (2001). The e-Business framework.
http://www.geocities.com/WallStreet/Floor/5815/ .

Flynn, P. (2001). The XML FAQ.
http://www.ucc.ie/xml/ .

Foltz, P. W. (1996). Latent Semantic Analysis for Text-Based Research.
http://www-psych.nmsu.edu/ pfoltz/reprints/BRMIC96.html .

Fuhr, N. (1995). Information Retrieval, Skriptum zum vorlesung im ss 93.

Group, O. M. (2001). What is uml and why is it important?
http://www.uml.org/ .

Harold, E. R. and Means, W. S. (2001). XML in a nutshell. O’Reilly.

69

BIBLIOGRAPHY 70

Herzum, P. and Sims, O. (1998). The business component approach. OOPSLA.

Heumann, J. (2001). Introduction to business modeling using the unified
modeling language. Technical report, The Rational Edge,
http://www.therationaledge.com/content/mar 01/ .

Hoppenbrouwers, J. (1997). Conceptual Modeling and the Lexicon. PhD
thesis, CentER for Economic Research.

Hruby, P. (1998). Structuring specification of business systems with uml (with
an emphasis on workflow management systems). OOPSLA.

Hung, K. and Patel, D. (1997). Modelling domain specific application
frameworks with a dynamic business object architecture: An approach
and implementation. OOPSLA.

Iyengar and Brodsky (1998). XML Metadata Interchange Format.
ftp://ftp.omg.org/pub/docs/ad/98-10-17.pdf .

Johanesson, P. and Perjons, E. (2001). Design principles for process modelling
in eai. Information Systems.

King, N. (2002). Eai directions. intelligent enterprise.

Laudon, K. and Laudon, J. (1996). Management Information Systems,
Organization and Technology. Prentice Hall, 4th edition.

Leon, D. J. (2000). Incorporating the WordNet Lexical Database in an
Intelligent Tutoring System.
http://anny.kinjo-u.ac.jp/ houser/jcp/28.html .

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. (1993).
Introduction to WordNet: An On-line Lexical Database.

Mirbel, I. (1997). Semantic integration of conceptual schemas. Data and
knowledge engineering, 21.

Missaoui, R. and Sahraoui, H. (1998). Migrating to an object-oriented
database using semantic clustering and transformation rules. Data and
knowledgeengineering.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Norealt, T., McGill, M., and Koll, M. (1981). A performance
evaluation of similarity measures, document term weighting schemes and
representations in a Boolean environment. Butterworths.

OMG (1997a). Business objects architecture interoperability specification.
Technical report, OMG Business Objects Domain Task Force.

OMG (1997b). Unified Modeling Language Glossary.
www.csci.csusb.edu/dick/samples/uml.glossary.html .

BIBLIOGRAPHY 71

Owei, V. and Navathe, S. B. (2001). Enrichting the conceptual basis for query
formulation through relationship semantics in databases. Information
Systems.

Paijmans, H. (1999). Explorations in the Document Vector Model of
Information. PhD thesis, Tilburg University.

Penker, M. and Eriksson, H.-E. (2000). Business Modeling With UML:
Business Patterns at Work. John Wiley and Sons.

Persson, E. (2000). Business object components? OOPSLA.

Popkin (1998). Modeling Systems with UML. Popkin Software,
http://www.popkin.com/whitepaper/uml.pdf .

Ray, E. T. (2001). Learning XML. O’Reilly.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991).
Object-Oriented Modeling and Design. Printice Hall.

Salton, G. (1989). Automatic text processing: the transformation, analysis and
retrieval of information by computer. Addison Wesley.

Shelton, R. E. (1995). Enterprise re-use. Distributed Computing Monitor,
10(3rd).

Sutherland, D. J. (1995). The business object architecture: Business objects
for corporate information systems. OOPSLA.

Suzuki, J. and Yamamoto, Y. (1998). Making uml models exchangeable over
the internet with xml: Uxf approach. OOPSLA.

Times, L. A. (2001). Case Study: New England Healthcare EDI Network.
http://www.cisco.com/warp/public/345/hipaa/docs/ . Februari
4th issue.

van den Heuvel, W. J. (2002). Integrating Modern Business Applications
With Objectified Legacy Systems. PhD thesis, Tilburg University.
Forthcomming.

van den Heuvel, W. J. and Papazoglou, M. (1999a). Bridging Legacy
and Business Components with Parameterizable Business Objects: The
BALES Methodology. Infolab, Tilburg University.

van den Heuvel, W. J. and Papazoglou, M. (1999b). Bridging legacy and
business components with parameterizable business objects: The bales
methodology. OOPSLA.

van den Heuvel, W. J. and Weigand, H. (2000). Cross-organizational worklow
integration using contracts. OOPSLA.

BIBLIOGRAPHY 72

w3c (2000). Extensible Markup Language (XML). World Wide Web
Consortium,
http://www.w3.org/XML/ .

Walsh, N. (2001). DocBook.
http://nwalsh.com/docbook/ .

Walsh, N. and Muellner, L. (2001). DocBook: The Definitive Guide. O’Reilly.

Wangler, B. and Paheerathan, S. (2000). Horizontal and vertical integration
of organizational it systems. Information Systems Engineering.

Warmer, J. and Kleppe, A. (1999). Praktisch UML. Addison Wesley.

Winer, D. (1998). XML-RPC for newbies.
http://davenet.userland.com/1998/07/14/xmlRpcForNewbies .

XML-RPC (2001). XML-RPC. Userland Software Inc.,
http://www.xmlrpc.com/ .

XSchema (2001). XML Schema. World Wide Web Consortium,
http://www.w3.org/XML/Schema .

Zaremski, A. M. and Wing, J. M. (1995). Specification Matching of Softare
components. Carnegie Mellon University.

