
Transformation selection for aptness-based web retrieval

B. van Gils
basvg@acm.org

H.A. Proper
erikp@acm.org

P. van Bommel
p.vanbommel@science.ru.nl

P. de Vrieze
p.devrieze@science.ru.nl

Radboud University Nijmegen
Institute for Computing and Information Sciences

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract

A myriad of resources can be found on the Web to-
day, and finding (topically) relevant resources for a
given information need is a daunting task. Even if
relevant resources can be found, they may not be
apt for the searcher in a given context: some prop-
erties of the resource may be “wrong” for his cur-
rent context. Such issues can often be resolved by
means of transformations. In this paper we discuss
an algorithm for selecting candidate transformations
for a given situation and present our first experiences
with this algorithm.

1 Introduction

One of the challenges on the Web is to deal with het-
erogeneity: there are many forms / formats in which
information is published on the Web, ranging from
static webpages to movies and E-services. In (Gils,
Proper & Bommel 2003, Gils, Proper, Bommel &
Weide 2004b) we have presented a formal model for
information supplied on the Web. The essence of this
model is fairly straightforward and follows the lines
of the RDF-initiative (Lassila & Swick 1999). In our
model, resources on the Web:

• are typed

• are interrelated
• may have attributes

• are about something (See e.g. (Huibers, Lalmas
& Rijsbergen 1996) for a treatment of aboutness)

When searching on the Web, it is not sufficient to
merely look at topical relevance. In estimating how
apt a resource is in a given situation, other factors
play a crucial role as well. For example, the size of
a resource, its file-format and price may also deter-
mine if a searcher is ultimately interested in a (top-
ically relevant) resource. If some of these attributes
are wrong, transformations may alleviate these prob-
lems. Transformations in the form of conversions be-
tween different file formats are well known. How-
ever, transformations can also affect other attributes.
Examples include:

• Transform a file from HTML to HTML and re-
move all its hyperlinks

• Transform an image and lower its resolution

• Transform a ZIP-archive and remove its pass-
word

The need for such a broad definition of aptness is rec-
ognized in e.g. (Parker 2004):

... their definition of availability omitted the
need for information to be in useful form.

In a retrieval setting, transformations from an input
instance of a given type, with certain properties to an
output instance of a certain type with certain proper-
ties may thus be used. If no singleton transformation
is available, a composed transformation may be con-
structed by concatenating several transformations.

It may be the case that more than one (either a single-
ton or a composed) transformation is available for a
given task. Selecting the “optimal” transformation
may be difficult and developing an algorithm to aid
us in doing so is the main goal of this paper.

The remainder of this paper is organized as fol-
lows. In Section 2 we briefly explain what properties
are and how they can be represented. In Section 3
the basic properties of transformations are discussed
as well as the effect that transformations may have
on properties. Section 4 concerns composed trans-
formations, including a discussion on transformation
patterns. Finally, in Section 5 we discuss an algorithm
for selecting transformations for a specific situation.
Conclusions and future work are discussed in Sec-
tion 6.

2 Properties of resources

Often, static and dynamic behavior of instances de-
termine types. This is the case in e.g. object orienta-
tion and abstract data types (Goguen, Thatcher, Wag-
ner & Wright 1977). In case of resources on the web,
however, this is not entirely the case since resource
types are determined independent of properties that
an instance may or may not have.

Each resource on the Web has at least one type and
may have more types because of subtyping. For
example, any XML file is also an SGML file. These
types have nothing to do with the properties that
instances may have. An important observation is
that instances must have types and may have certain
properties. Remains the question: what are proper-
ties?
A property can be any statement about the type(s),
relation(s) or attribute(s) that an instance may have.
For example, attributes of resource r are:

• r has a specific type t



• r is related to another resource and this relation
is of type hyperlink. Put differently, this property
can be called has hyperlinks

• r is related to another resource s
• r has a version attribute
• r has a version attribute with a specific value

As has been stated before, each resource on the Web
has at least one type. It can have more types because
of subtyping. Let RS be the set of all resources on
the Web and TP be the set of all resource types. Then
HasType ⊆ RS ×TP.

Properties can be thought of as predicates that may
or may not hold for a certain resource. For exam-
ple, r has hyperlinks is a (unary) property over re-
sources, while r is based on s would be an example
of a binary property. In general, properties can have
any arity higher than one. To model this formally, we
will presume a property to be represented in general
as ϕ(r,W ), where r is a resource andW is a sequence
of (zero or more) resources. If ϕ(r,W ), then resource
r is said to have property ϕ with resources W .

To be able to evaluate the truth-assignment of ϕ for a
given instance r we use the function Γ:

Γ(r, ϕ) , {W | ϕ(r,W )}

In other words, Γ(r, ϕ) returns the set of sequences
of resources W for which ϕ is true, given a resource
r.
If r is a resource, r HasType HTML and r actually
has hyperlinks (it is indeed possible to have a HTML
without any hyperlinks) then ϕ(r,W ) indeed holds
for any W .

Note that a formal language Φ for formulating what
properties ϕ are is needed. In other work we have
specified such a language on top of the model al-
ready mentioned. The reader is referred to (Gils,
Proper, Bommel & Weide 2004a) for more details. As
an example, the has hyperlinks property would be
expressed as

ϕ(e,W ) , ∃r∈RL [Src(r) = e ∧ r HasType hyperlink]

Note that W does not occur anywhere on the right-
hand side of this definition. This is indeed what one
would expect from a unary predicate over resources.

In this example, RL is the set of all relations. Rela-
tions are presumed to be binary with a source and
a destination. The Src function finds the source of a
specific relation.

Note that instances may have properties. Also, note
that if one instance of a certain type has a property,
this does not imply that all instances of this type
have this property. In case of the has hyperlink ex-
ample, not every HTML file has hyperlinks. In other
words (when considering properties at the typing
level): properties are optional.

3 Transformations

With transformations, one resource can be trans-
formed into another. The interesting thing, though,
is that only some resources can be modified by a

transformation. For example, it seems rather point-
less to feed an audio file to a transformation that re-
moves hyperlinks. In this section we explain the be-
havior of transformations, especially with respect to
properties.

Usually, data transformation as considered in our
paper, is distinguished from program transforma-
tion. The latter kind of transformation has a rich his-
tory of theory and practice. An overview has been
presented in (Partsch 1990). Recent research results
indicate that this area is still evolving into new direc-
tions, such as tool-supported adaptation of software
systems (see e.g. (Lämmel 2004)).

Indeed our transformation theory has its focus in the
retrieval of data resources. Our theory is particu-
larly tailored to properties of data resources and ef-
fects of transformations, in a heterogeneous context
such as the Web. An overview of concrete trans-
formation rules operating on generic structures (e.g.
graphs) are found in for example (Andries, Engels,
Habel, Hoffmann, Kreowski, Kuske, Plump, Schürr
& Taentzer 1999).
This section is organized as follows. In Section 3.1
we briefly describe some properties of transforma-
tions. In Section 3.2 we discuss the effects of trans-
formations on properties. Finally, in Section 3.3 we
will discuss how the effects of transformations may
be learned.

3.1 Characteristics of transformations

An important characteristic of transformation is that
any specific transformation has an input type and
an output type. In other words, it transforms in-
stances (resources) from its input type to its output
type. Let TR be the set of all transformations and
Input,Output : TR→TP be functions that find the
input type and output type of a transformation. As
an abbreviation we use

t1
T−→ t2 , Input(T ) = t1 ∧Output(T ) = t2

to denote that transformation T has t1 as its input
type and t2 as its output type.

This behavior of transformations at the typing level
must have its reflection at the instance level. The se-
mantics of any transformation T is that it transforms
resources into resources. Let

−→
T denote the seman-

tics of a transformation such that
−→
T (r) = s denotes

that transforming r with T results in s. By definition
we then have the following. Let r be a resource and
r HasType t1. Furthermore, let T be a transformation
such that t1

T−→ t2. Then:

−→
T (r) = s =⇒ s HasType t2

3.2 Effects of transformations on properties

When discussing the effects of transformations on
properties, a distinction must be made between the
instance level and the typing level, similar to what
we discussed in Section 3.1. We first discuss the in-
stance level and then briefly elaborate on the typing
level.

2



At the instance level, we discern four classes of ef-
fects:

1. A transformation is neutral with regard to some
property. For example, a transformation that
transforms HTML files to PDF may be neutral
with regard to the price attribute.

2. A transformation may alter a certain property.
For example, a transformation that lowers the
resolution of an image may lower its price too.

3. A transformation may remove a certain property.
For example, a transformation that transforms
HTML files to ASCII may remove all hyperlinks.

4. A transformation may introduce a certain prop-
erty. For example, a transformation may add a
password to a ZIP file.

Let ECi = {neutral, alter, remove, introduce} be the
set of effect classes of transformation at the in-
stance level. Using the Γ relation, it is straightfor-
ward to find out the effect class of a transformation
T ∈ TR with regard to a specific ϕ. Let Effect :
(TR×RS ×Φ)→ECi be the function that finds the ef-
fect class of a transformation T ∈ TR on a resource
r ∈ RS with regard to a property ϕ. This can be
achieved by comparing the sets of objects that make
Γ true for both the input and the output instance of
the transformation:

• If these sets are equal, then for this (input) in-
stance, the transformation is neutral with regard
to this specific ϕ. For example, if ϕ = HasType ,
and both the input instance and output instance
have the same types then the transformation is
neutral with regard to data resource types.

• If the input set is a subset of the output set, then
the transformation, for this (input) instance, ap-
parently is introducing with regard to this ϕ. In
case of ϕ = HasType this means that the input
type of the transformation is a subtype of its out-
put type.

• Similarly, if the output set is a subset of the in-
put set, then the transformation, for this (input)
instance is removing with regard to this ϕ. In
case of ϕ = HasType , this means that the out-
put type of the transformation is a subtype of its
input type.

• If neither of the above applies then, for this
(input) instance, the transformation is said to
be altering with regard to this ϕ. We describe
this as follows: let e be the input instance of
the transformation and

−→
T (r) = s be the out-

put instance of the transformation T . In case
of ϕ = HasType this implies the following.
Let τ (r) , {t | r HasType t} be a relation that
finds the types of a recourse.

– The sets τ (r) and τ (s) overlap such that
τ (r) 6⊆ τ (s) ∧ τ (s) 6⊆ τ (r). For example,
r and s do have a supertype in common
(both are files) but apart from that they are
completely different.

– The sets τ (r) and τ(s) are disjoint. This im-
plies that r and s have no (super)type in
common.

Summarizing, the effect of transformation T on re-
source r with regard to property ϕ is the following:

Effect(T, r, ϕ) ,
if Γ(r, ϕ) = Γ(

−→
T (r), ϕ) then neutral

if Γ(r, ϕ) ⊂ Γ(
−→
T (r), ϕ) then introduce

if Γ(r, ϕ) ⊃ Γ(
−→
T (r), ϕ) then remove

else alter

Recall that transformations have an input type and
an output type and that (some) properties are op-
tional (at the typing level). Because properties
are optional, the effect classes of a transforma-
tion regarded at the typing level are: ECt =
{neutral, hybride, remove, introduce}. Following the
line of reasoning for the instance level:

• If a transformation is neutral with regard to a ϕ
for all instances of a given data resource type
then, at the typing level, the transformation is
said to be neutral with regard to this specific ϕ.

• It seems apparent that, at the type level, a trans-
formation is introducing for a given ϕ if the trans-
formation is introducing for every instance of
this type. This is, however, not the case. If a
transformation is introducing with regard to a ϕ
for at least one instance and neutral for all oth-
ers, then at the typing level the transformation
is said to be introducing with regard to this spe-
cific ϕ.

• For similar reasons, if a transformation is
removing with regard to a ϕ for at least one
instance and neutral for all others, then at the
typing level the transformation is said to be
removing for this specific ϕ.

• Again, it may seem that at the typing level a
transformation is altering with regard to a prop-
erty if it is altering for all instances of this type.
However, this is not the case. Other situations
may occur also, for example: a transformation
may be introducing for one instance, and altering
for another. This occurs when a transformation
sets the version attribute to the value 2.6, re-
gardless of the fact that data resource already
had a version attribute. If it did, the transforma-
tion is likely to be altering for this property. If it
didn’t, the transformation would be introducing.
In this case, we’re indecisive about the effect that
a transformation has on a certain property.

Summarizing, the effect of a transformation T with
regard to a property ϕ, considered at the type level is
the following:

Effect(T, t, ϕ) ,
if ∀r∈π(t)

[
Γ(r, ϕ) = Γ(

−→
T (r), ϕ)

]
then neutral

if ∀r∈π(t)

[
Γ(r, ϕ) ⊆ Γ(

−→
T (r), ϕ)

]
then introduce

if ∀r∈π(t)

[
Γ(r, ϕ) ⊇ Γ(

−→
T (r), ϕ)

]
then remove

else hybride

3.3 Learning the effects of transformations

In real applications using a transformation frame-
work as described, many types, instances, and trans-
formations will be used. Regarding properties, a

3



choice must be made: either a fixed (and predeter-
mined) set of properties exists in such an application,
or they may be specified at all times.

In both cases, though, it may be the case that the ef-
fect of a transformation on a certain property is un-
known at a certain point in time. These effects can be
learned in the following manner:

• Initially, it is assumed that a transformation is
neutral with regard to every property, similar to
the notion of being innocent until proven other-
wise.

• After a transformation is performed on an in-
stance, the properties of the input instance and
the output instance are compared to study the
effects:

– We may discover a new property of a type.
For example: before the transformation
was executed we didn’t have a single in-
stance of the PDF type with a price but af-
ter the transformation we do. This implies
that the next time we compose a transfor-
mation involving the PDF-type we can use
this additional knowledge.

– We may discover that a transformation
is not neutral with regard to some prop-
erty; i.e. it may alter, remove or add cer-
tain properties. For example, we may
learn that a transformation from HTML to
POSTSCRIPT removes all hyperlinks.

We are aware of the fact that transformation of web
resources is necessary for a variety of purposes, in-
cluding authoring, presentation, and querying. We
do not consider all possible purposes in the current
paper. As an example, deterministic approaches for
document querying are considered in (Che 2003).
Those transformations aim at optimization of query
efficiency.

4 Composing transformations

For transformations, the input type and output type
are known. Using this information it is possible to
compose transformations by concatenating them. In
this section we will study how this can be done by
showing several common combination patterns. We
do not provide a complete / exhaustive overview.

It is only possible to concatenate two transforma-
tions if the output type of one of them equals the
input type of the other. Thus,

if T1, T2 ∈ TR such that t1
T1−→ t2 and t2

T2−→ t3

then ∃T3

[
t1

T3−→ t3 ∧ T3 = T2 ◦ T2

]

By combining transformations in this manner, a di-
rected graph of transformation is created in which the
nodes are the resource types and the edges are pos-
sible transformations between them. Since we are
discussing transformations, this situation closely re-
sembles that of morphisms in category theory1

For our purposes it is important to select the right
transformation from this “transformation graph”.

1http://en.wikipedia.org/wiki/Category_theory

An algorithm for doing so is discussed in Section 5.
In the remainder of this section we will discuss sev-
eral patterns of how transformations can be com-
bined.
The first pattern to be discussed is that of a trans-
formation from a type to the same type. An exam-
ple would be a transformation from HTML to HTML
that removes hyperlinks or some header informa-
tion. Figure 1 graphically depicts this.

T1

t1

Figure 1: Transformation to the same type

An important aspect in this respect is the question of
loops: does it make sense to traverse the same node
or path in the transformation graph more than once?
Traversing the same path more than once means that
the same (series of) transformation(s) will be exe-
cuted over and over again. This does not make sense.
Traversing the same node (i.e. the same resource
type) more than once does make sense, though. The
above example with a transformation from HTML to
HTML that removes hyperlinks is a good example.
In other words, paths through the transformation
graph must be simple but need not be elementary (See
e.g. (Grassman & Tremblay 1996)).

Figure 2 depicts the simple concatenation pattern. In
this case there is only one (composed) transforma-
tion from type t1 to type t3.

T1
t1 t2

T2
t3

Figure 2: Simple concatenation

The situation becomes slightly more complex if there
are several ways to get from type t1 to t2 and from t2
to t3. This is depicted in Figure 3. In this case there
are f possible transformations for the first step and
(n − g + 1) possible transformations for the second
step. This means that there are f×(n−g+1) possible
ways to transform instances of type t1 to type t3.

T1
t1 t2

Tg
t3

Tf Tn

Figure 3: Concatenation

This pattern may be combined with the first pattern:
it is possible to transform from type t1 to t2, then
transform from t2 to t2 to achieve a certain ffect on
some property, and finally transform from t2 to t3.
Figure 4 depicts this. There are 2×f×(n−g+1) possi-
ble ways to transform instances of type t1 to type t3,

4



assuming that transforming from t2 to itself is only
done once.

T1
t1 t2

Tg
t3

Tf Tn

To

Figure 4: Concatenation with a repeating type

Last but not least, it is also possible that not only
a composed transformation from t1 to t3 exists, but
also a direct transformation. Combined with the first
pattern this yields the situation depicted in Figure 5

T1
t1 t2

Tg
t3

Tf Tn

To

Tp

Figure 5: Direct and composed transformations

These patterns form the (theoretical) basis for finding
all paths through the transformation graph. This is
the topic of the next section.

5 Selection

The main topic for this section is to devise an algo-
rithm that takes the possible transformation paths
through the transformation graph under consider-
ation. Because of the fact that there may be many
possible paths, our algorithm must, somehow, re-
duce the number of acceptable paths. We will use
a penalty-mechanism for this. The configuration of
this penalty mechanism can be used to formulate the
desired properties of the transformation paths (for
example: the algorithm can be tweaked to return
exactly one optimal path). In this section we will
present the algorithm. Fine-tuning the (parameter-
ized) algorithm is part of future research.

In this section we will use the situation as depicted in
Figure 6. This figure shows 10 types and 21 possible
singleton transformations. We will search for trans-
formations from RTF to PS. For clarity, the names of
the transformations have been omitted.

5.1 Naive path finder

In the simplest case we search for all possible paths
from the input type to the output type, i.e. perform a
depth first exhaustive search. The algorithm is rather
straightforward:

HTML

OO

PDFPS

EPS

TXT

DVI

TEX

DOC

RTF

Figure 6: Example transformation graph

1. take the start type and take all transformations
that have this type as its input type.

2. loop over these transformations and check if this
transformation has been performed already2.

3. if the transformation has not been performed
yet, check if the target type is reached with the
current transformation. If it has been reached
then we have found a transformation path. If it
has not been reached, make the current output
type the new input type and start with step 1
again to recursively find the target.

We implemented this algorithm in the Python3 pro-
gramming language in order to be able to experi-
ment with it. The pseudo-code in Figure 7 exempli-
fies the above algorithm.

Performing this algorithm on the above example
leads to the following transformation paths:

1 rtf→ doc→ oo→ ps
2 rtf→ doc→ oo→ pdf→ ps
3 rtf→ doc→ oo→ pdf→ pdf→ ps
4 rtf→ doc→ doc→ tex→ dvi→ ps
5 rtf→ doc→ tex→ dvi→ pdf→ ps
6 rtf→ doc→ tex→ dvi→ pdf→ pdf→ ps
7 rtf→ doc→ tex→ pdf→ ps
8 rtf→ doc→ tex→ pdf→ pdf→ ps
9 rtf→ doc→ pdf→ ps

10 rtf→ doc→ pdf→ pdf→ ps
2We assume that it is rather pointless to perform the same transforma-

tion more than once. This also prevents endless looping.
3http://www.python.org

5



�
function getPath(from, to, currentPath)
begin

// findTransformationsFrom finds all
// transformations starting with input
// type from
candidates := findTransformationsFrom(from);
results := new List();

foreach transformation in candidates
begin

if transformation in currentPath then
break;

if transformation.resultType = to then
results.append(currentPath + transformation)

else
results.append(getPath(transformation.resultType,

to, currentPath + transformation));
end;

return results;
end;
� �

Figure 7: Pseudo code for path finder

With all possible transformation paths known, it is
straight forward to figure out what happens to prop-
erties during transformations. If the effect that each
transformation has on a given property is known
then this knowledge should be used: follow the path
and, in each node, determine if the property still
holds or not.
However, if the effects that some transformations
have on a given property are unknown, the only way
to be absolutely sure which path should be selected
would be to perform every transformation path (and
thus learning the effects on this property for future
use too).
We consider the composition of transformations. A
sequence of transformations may compose a new
’overall’ transformation. This raises the question of
transformation performance, since several different
transformation sequences may transform a given in-
put type into a given output type. In our project, the
transformation performance is considered by taking
a shortest path view of web resource transformation.
We illustrate this in section 4 and 5, setting the con-
text for a full treatment of web transformation per-
formance as found in other areas of transformation
(see e.g. database transformation in (Rahayu, Chang,
Dillon & Taniar 2001)). Note that in our shortest path
view we do not necessarily require a single short-
est path to be found. Rather, we aim at a reduction
of the possible paths in order to yield a selected set
of candidate transformation compositions. We have
successfully exploited reduction in transformations
in earlier projects, such as database transformation
(see e.g. (Bommel & Weide 1992)).

5.2 Penalty-based approach

The approach discussed in the previous section has
some serious disadvantages. First of all, as the num-
ber of types and singleton transformations grow, the
number of possible paths through the transforma-
tion graph is likely to explode. Determining all pos-
sible paths from a given input type to an output type
at runtime will take an increasingly amount of time.
The situation is even worse if properties may be com-
posed dynamically at runtime (see Section 3.3): af-

ter finding the possible paths, they must all be ex-
ecuted to determine what happens with the newly
composed properties.

A similar problem exists in the world of (relational)
databases: performing a join before doing a selec-
tion is computationally heavier than performing the
join after doing the selection. Therefore, a push-
down selection scheme should be adopted (See e.g.
(Ullman 1989)). Translated to our problem of walk-
ing through the transformation graph: determining
which transformation paths are not feasible should
be done as soon as possible as opposed to remov-
ing the unwanted paths after figuring out all possi-
ble paths. Simply put: figure out which paths are
likely to be infeasible while finding all possible paths
through the graph. As soon as it is likely that follow-
ing a path will lead to no good, that path should be
abandoned and a new one tried; i.e. break the cur-
rent loop and go on with the recursive search. This
will not only lower the time that it takes to perform
the search but, hopefully, will lower the number of
paths that are found.

The question that remains is: what criteria should
be used to estimate the likelihood that a path will
not be feasible. We propose to use a penalty-based
approach:

• Short paths are likely to be better (for exam-
ple: faster in terms of execution time) than long
paths. Therefore, each step is penalized. This
is particularly apparent when, for example, ex-
ecution time plays a role: every step takes ex-
tra time (if, in a certain situation, the execution
time does not play a role than this penalty can be
set to 0). However, this is not the only reason.
Transformations may also reduce the “quality”
of the input resource which can also be a reason
to increase the penalty for this transformation.

• If a property must be retained during transfor-
mation, removing it along the way will result
in a penalty. If the property is added along
the way, this will result in a negative penalty.
Similarly, if a property must be removed during
transformation, adding it will lead to a penalty
and removing it will lead to a negative penalty.

• As soon as the current penalty for a path sur-
passes a certain boundary then it is assumed
that this path is likely to be not feasible: there-
fore, it will no longer be followed and a new
path must be tried.

We also implemented this algorithm in the Python
programming language. The pseudo code in Fig-
ure 8 shows the outline of this implementation and
exemplifies the algorithm.

We extended the above mentioned example with
penalties such that every transformation has a
penalty of 0.1 because of execution time. However,
the transformations dvi → pdf, pdf → pdf, oo → ps
and oo → pdf have a penalty of 0.2 and tex → pdf
has a penalty of 0.3 because these are presumed to
be heavier in terms of computation. Also, we know
that the transformations oo → html is removing with
regard to a certain property ϕ and doc → tex is
introducing for this same property. Since we wish
to retain this property, the former transformation re-

6



�
function getPath(from, to, maxPenalty, currentPath)
begin

// findTransformationsFrom finds all
// transformations starting with input
// type from
candidates := findTransformationsFrom(from);
results := new List();

foreach transformation in candidates
begin

if ((transformation in currentPath)
or (transformation.penalty > maxPenalty)) then

break;
if transformation.resultType = to then

results.append(currentPath + transformation)
else

// penalty is a function that calculates the
// penalty of this transforamtion
results.append(getPath(transformation.resultType,

to, maxPenalty - penalty(transformation),
currentPath + transformation));

end;

return results;
end;
� �
Figure 8: Pseudo code for penalty based path finder

ceives a negative penalty of 0.2 and the latter receives
a positive penalty (bonus) of 0.2.

Running this algorithm and, thus, taking into ac-
count the above mentioned penalties results in the
following paths:

path number path
1 rtf → doc→ oo→ ps
2 rtf → doc→ tex→ dvi→ ps
3 rtf → doc→ tex→ dvi→ pdf → ps
4 rtf → doc→ tex→ pdf → ps
5 rtf → doc→ pdf → ps

Selecting the “optimal” path from these transforma-
tions still needs to be done. It is tempting to simply
select the path with the lowest penalty, but this may
not always be the best path because the total effect
that the transformation(path) has on the properties
must be taken into account. For the above example,
the penalties and effects are the following:

path number penalty effect
1 0.4 neutral
2 0.2 introducing
3 0.4 introducing
4 0.4 introducing
5 0.3 neutral

If the effect that a composed transformation has
on properties is taken into account, as well as the
penalty this transformation receives then the second
path is to be selected since:

1. It is introducing for a property that we wish to
retain, so we’re 100% sure that the property will
hold after this transformation path is executed
on any given input instance.

2. It has the lowest penalty.

5.3 Reality check

The above example is, obviously, extremely simplis-
tic and very small. To see if the general idea behind
our algorithm works, we conducted a larger experi-
ment. The goal of this “reality check” is to find out if

the algorithm indeed selects less paths, shorter paths
and executes faster.

• There are 100 types.

• We’re looking for a transformation from type t12
to type t89.

• We assume the existence of three properties:
p1, p2 and p3. The output instance must have
properties p1 and p2, but may not have property
p3.

• There are 161 singleton transformations.

• Every singleton transformation will result in a
penalty of 0.1.

• For 59 transformation-property combinations
we know the effect (i.e. there are 59 statements
in the form: Transformation t has effect e for
property p), spread out over 46 transformations.

• If we don’t know the effect of a transformation
on a property, we will assume that it is neutral.

• The average penalty (either positive or negative)
is 0.207.

• The maximum penalty that a transformation
path may have is set to 2.5.

The graph with all transformations is depicted in
Figure 9. For clarity, the names of the transforma-
tions have been omitted. Note that we did not in-
clude “transformations to self” (see Figure 1). For
purposes of this experiment this does, at least con-
ceptually, not make a difference. After running both

1 2 3 4 5 6 7 8 9 10

11 START
12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 END
89 90

91 92 93 94 95 96 97 98 99 100

Figure 9: Larger example

the naive path finding algorithm and the more com-
plex penalty based approach we observe the follow-
ing:

• The path finder algorithm finds a total of 915
possible paths through the graph. Using the
penalty based approach, this is reduced to 82 ac-
ceptable paths.

• The average length of a path for the path finder
algorithm is approximately 27, whereas the av-

7



erage length in the penalty based approach is
approximately 18.

• For this particular example, the penalty based
approach is approximately 6 times faster than
the naive algorithm.

The above suggests that, at least for this example, the
penalty based algorithm performs better in terms of
execution speed as well as in the number / length of
the paths that it returns.

5.4 Discussion & Issues

Recall that the goal of this article is to describe an
algorithm that finds composed transformations that
increase the aptness of a resource on the Web. In
other words, the algorithm should select transfor-
mations that manipulate resources such that the user
will consider them more apt.

This immediately leads to several interesting, yet un-
solved, problems such as: How can one find out
what the user wants? How can one test if the trans-
formation has indeed increased the aptness for this
specific user in this specific situation? These ques-
tions are traditionally covered in the realm of user
modeling and user profiles. Even though it is crucial
to be able to answer this question for any real ap-
plication it remains unanswered still in our theory.
Finding a good way to get this (kind of) information
(for example by deploying a query by navigation-like
approach, see (Bruza & Weide 1992)) from the user is
part of future research.

In theory, the properties as described in this article
are a nice way to describe both the resources on the
Web (i.e. resource r has some property p) as well as a
query formulation for the resource that a certain user
is interested in (i.e. a resource r about x with prop-
erty p1 and without property p2). In practice, though,
it may not be so easy to work with these properties.
The first property-related issue has to do with the
question: does the application support a fixed set of
predefined properties, or can any property be formu-
lated at run-time. The latter is, conceptually, nice be-
cause it allows more flexibility. However, in that case
it will be very hard (in terms of computation) to de-
termine if a transformed resource has this property
or not. The only way to find this out is to actually
perform the transformation. This brings the second
issue with properties to the fore: for every property
that is known to the system, a tool (software) must
exist that (quickly) tests whether a resource has that
property or not. In other words, a trade-off has to
be made between (conceptual) flexibility and (oper-
ational) availability.

An issue with both the properties and the proposed
(penalty based) algorithm has to do with the fact that
the relative importance of properties can not be indi-
cated. That is, suppose a user indicates that s/he is
looking for a resource r with a certain property p1

and without a property p2. In our present approach
it is not possible to express the fact that having prop-
erty p1 is more important, to this user, than not hav-
ing property p2.

It is possible to have parameterized transformations.
An example of such a transformation would be a

transformation that lowers the resolution of an im-
age with n percent. In this case

−→
T (r, 10) would de-

note the fact that transformation T transforms re-
source r (an image) and lowers its resolution by 10%.
If we would facilitate such types of transformation
then optimizations might be possible along the lines
of:

• maximize the value of property p1

• minimize the value of property p2

In this paper we did not include details about this
approach.

6 Conclusions & Future research

The goal of this paper was to find an algorithm for
selecting (one or more) transformations in order to
increase the aptness of resources on the Web. Such
a transformation framework can be used in a re-
trieval setting on the Web where traditionally only
/ mainly topical relevance is used to select resources
that may satisfy the users information need. We pro-
pose to use a “push-down selection”-like4 approach
in which first the resources that are topically rele-
vant are selected (for example by a search engine like
GOOGLE) after which transformations may be used
to increase the aptness of these selected resources.
Such a strategy is needed since a set of transforma-
tions in combination with the large set of resources
available to us directly via the Web, yields an even
larger set of resources. In terms of (Ullman 1989),
the set of resources available on the web can be seen
as a (large!) extensional database. Use of the above
discussed transformations yields a practically infi-
nite intensional database. Searching through the lat-
ter database can only be done practically if branch-
and-bound like optimization strategies are used to
reduce search space.

In earlier work (e.g. (Gils et al. 2003, Gils et al. 2004b))
we have presented a formal model for information
supplied on the Web and explained how properties
can be used to describe both resources on the Web,
and (the non-informational aspects of) one’s infor-
mation need. For example, a property of an image-
resource on the Web could be its resolution. Sim-
ilarly, the resolution / quality of an image can be
part of the information need of a searcher. These
properties are an important factor when trying to
find “acceptable transformation(path)s” for increas-
ing the aptness of a resource.

Simply put: transformations transform one resource
into another. More specifically, a transformation
will transform instances from its input type to in-
stances of its output type. Furthermore, transforma-
tions may have an effect on the properties of the in-
put instance. For example, consider the transforma-
tion from HTML to Postscript. Input instances may
have hyperlink-properties. Output instances of this
transformation will not have this property. In other
words, this transformation is removing with regard to
the property has hyperlinks.

Since both resources on the Web and desired re-
sources (formulated in terms of an information need)

4As also used in e.g. database query optimization strategies (Ullman
1989).

8



are formulated in terms of these properties, our al-
gorithm must take these effects into account when
determining which transformations / transforma-
tion paths are acceptable. For this we use a penalty-
based approach which is an extension of a simple
depth first exhaustive search which finds all possible
transformations. That is, while recursively finding all
paths we try to prune those paths that are likely to
be not feasible. For this we make the following as-
sumptions:

• Longer paths are likely to be less good than
shorter paths. Therefore, each step through the
graph (i.e. performing a single 1-step transfor-
mation) will result in a penalty.

• Manipulating properties may either result in
a penalty or a bonus. If a transformation is
removing with respect to a property that must
hold for the output instance then this will result
in a penalty. If it is introducing for a property that
must hold then this will result in a bonus.

• If the total penalty of a path reaches a certain
level then we consider the path not feasible.

In two (small) experiments we have shown that such
an algorithm can indeed work and reduces both
the number of paths found (when comparing the
penalty based approach with the normal path find-
ing approach) as well as the time it takes for the
algorithm to finish. The algorithm’s results (a set
of transformation paths) must either be interpreted
manually or the algorithm must be run again under
a modified configuration.

Such a decision mechanism, which is closely related
to a parameterized tuning mechanism that may be
used to steer the working of the algorithm, is cur-
rently under investigation. There are some other is-
sues with our algorithm that need further attention.
First of all, finding out what the user wants (in terms
of properties) is a complex task traditionally dealt
with in the field of user modeling. We are currently
investigating a Query by Navigation-approach to deal
with this. Using this approach we also hope to tackle
the issue of the relative importance of properties. For
example, it may be more important (for a specific
user) to retain a certain property than it is to lose an-
other.
To summarize: we are trying to extend our approach
as well as develop tools to see how well our ap-
proach works in real world situations.

References

Andries, M., Engels, G., Habel, A., Hoffmann, B., Kre-
owski, H.-J., Kuske, S., Plump, D., Schürr, A.
& Taentzer, G. (1999), ‘Graph transformation for
specification and programming’, Science of Com-
puter Programming 4(1), 1–54.

Bommel, P. v. & Weide, T. v. d. (1992), ‘Reducing the
search space for conceptual schema transforma-
tion’, Data & Knowledge Engineering 8(4), 269–
292.

Bruza, P. & Weide, T. v. d. (1992), ‘Stratified Hypermedia
Structures for Information Disclosure’, The Com-
puter Journal 35(3), 208–220.

Che, D. (2003), Implementation issues of deterministic
transformation system for structured document
query optimization, in ‘Proceedings of 2003 In-
ternational Database Engineering & Application
Symposium’, Hong Kong, pp. 268–277.

Gils, B. v., Proper, H. & Bommel, P. v. (2003), A con-
ceptual model for information suppy, Technical
Report NIII-R0313, Nijmegen Institute for Infor-
mation and Computing Sciences, University of
Nijmegen, Nijmegen, The Netherlands, EU. Ac-
cepted for publication in Data & Knowledge En-
gineering.

Gils, B. v., Proper, H., Bommel, P. v. & Weide, P. v.
(2004a), Typing and transformational effects in
complex information supply, Technical report,
Radbout university Nijmegen Institute for Com-
puting and Information Sciences. (To be pub-
lished).

Gils, B. v., Proper, H., Bommel, P. v. & Weide, T. v. d.
(2004b), Transformations in information supply,
in J. Grundspenkis & M. Kirikova, eds, ‘Proceed-
ings of the Workshop on Web Information Sys-
tems Modelling (WISM’04), held in conjunctiun
with the 16th Conference on Advanced Informa-
tion Systems 2004 (CAiSE 2004)’, Vol. 3, Faculty
of Computer Science and Information Technol-
ogy, Riga, Latvia, EU, pp. 60–78.

Goguen, J. A., Thatcher, J. W., Wagner, E. G. & Wright,
J. B. (1977), ‘Initial algebra semantics and con-
tinuous algebras’, Journal of the ACM (JACM)
24(1), 68–95. ISSN: 0004-5411.

Grassman, W. K. & Tremblay, J.-P. (1996), Logic and Dis-
trete Mathematics, Prentice Hall, Upper Saddle
River, New Jersey.

Huibers, T. W. C., Lalmas, M. & Rijsbergen, C. J. v.
(1996), ‘Information retrieval and situation the-
ory’, ACM SIGIR Forum 30(1), 11–25.

Lämmel, R. (2004), ‘Transformations everywhere, edito-
rial’, Science of computing, Special Issue .

Lassila, O. & Swick, R. R. (1999), Resource description
framework (rdf) model and syntax specifica-
tion, Recommendation, W3C.
URL: http://www.w3.org/TR/1999/REC-rdf-
syntax-19990222/

Parker, D. B. (2004), ‘The folk art of information security
needs an upgrade’, Communications of the ACM
47(8), 11–12.

Partsch, H. (1990), Specification and Transformations of Pro-
grams, Springer-Verlag, Berlin.

Rahayu, J. W., Chang, E., Dillon, T. S. & Taniar, D. (2001),
‘Performance evalutation of the object-relational
transformation methodology’, Data & Knowledge
Engineering 38(3), 265–300.

Ullman, J. (1989), Principles of Database and Knowledge-
base Systems, Vol. I, Computer Science Press,
Rockville, Maryland.

9


